Теория функций комплексного переменного
Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.
Подобные документы
Понятие конформного отображения. Свойства конформного отображения, теорема Римана, теорема Лиувилля. Применение конформного отображения. Характеристика и примеры конформного отображение внешности дуги на внешность круга. Метод и форма профилей Жуковского.
курсовая работа, добавлен 03.10.2016Введение в анализ и дифференциальное и интегральное исчисление одного переменного. Локальные экстремумы и эскиз графика. Поведение функции вблизи точки разрыва и вычисление производной. Особенности дифференциального исчисления функций и его приложение.
контрольная работа, добавлен 08.05.2014Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.
презентация, добавлен 17.09.2013Понятие, свойства, графики элементарных функций. Характеристика степенной, квадратичной, показательной, логарифмической функций. Математическое описание обратно пропорциональной зависимости. Особенности графического изображения тригонометрических функций.
реферат, добавлен 17.06.2014Геометрический смысл производной функции комплексного переменного. Геометрический смысл аргумента и модуля производной. Общие свойства конформных отображений. Линейная, дробно-линейная, степенная функция. Понятие римановой поверхности. Функция Жуковского.
курсовая работа, добавлен 08.11.2017Исследование классификационных методов отображения плоскости на себя. Определение равенства геометрических фигур. Свойства параллельного переноса точки в плоскости. Принципы осевой и центральной симметрий в отношении прямой. Коэффициенты гомотетии.
краткое изложение, добавлен 17.03.2014Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.
контрольная работа, добавлен 17.12.2013- 33. Свойства функций
Основные понятия функций. Числовая и сходящиеся последовательности. Бесконечный, односторонний, замечательный пределы и пределы на бесконечности. Принцип сходимости, предел функции и теорема Гейне. Непрерывность функции, композиции и точки разрыва.
реферат, добавлен 17.01.2011 - 34. Числовые ряды
Определения, понятия и элементарные свойства сходящихся числовых рядов. Необходимое условие и достаточные признаки сходимости знакоположительного ряда. Признаки сравнения; признаки Даламбера, Коши. Исследование знакопеременных рядов; теорема Лейбница.
курс лекций, добавлен 30.07.2017 Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.
практическая работа, добавлен 07.09.2016Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.
курсовая работа, добавлен 22.04.2011Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.
статья, добавлен 05.12.2018Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.
дипломная работа, добавлен 29.10.2010Численный метод нахождения значений собственных функций дискретных полуограниченных снизу операторов. Оценки остатков сумм рядов Рэлея–Шредингера поправок теории возмущений. Вычисление оператора Лапласа с возмущающей функцией комплексного переменного.
статья, добавлен 31.05.2013- 40. Интегралы и ряды
Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.
методичка, добавлен 06.08.2015 Понятие и сущность функции в математике, характеристика основной теоремы арифметики. Отличительные черты мультипликативной и аддитивной арифметической функции. Определение целой и дробной части числа, описание дзета-функция Римана и функции Чебышева.
контрольная работа, добавлен 04.11.2016Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.
реферат, добавлен 12.09.2012Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.
контрольная работа, добавлен 12.01.2013Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.
курс лекций, добавлен 18.04.2016Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.
лекция, добавлен 10.02.2016Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.
курс лекций, добавлен 19.11.2014Характеристика особенностей первого и второго замечательного пределов. Сравнение бесконечно малых функций. Рассмотрение значения и места непрерывных функций. Определение непрерывности функции в точке. Исследование точки разрыва и их классификации.
реферат, добавлен 18.12.2017Индукция в геометрии и комбинаторике. Иррациональность значений тригонометрических функций. Квадратный трехчлен и фазовая плоскость. Комплексные числа и операции с ними. Треугольник Паскаля и его свойства. Пути и отображения комплексной плоскости.
учебное пособие, добавлен 18.06.2015