Напівгрупи напівстохастичних матриць та їх застосування
Дослідження графоаналітичних характеристик які дають явне подання лівого власного вектора напівстохастичної матриці, який відповідає власному значенню 1, що покладено в основу методу розв’язування лінійних систем рівнянь, особливості їх застосування.
Подобные документы
- 26. Чисельне розв'язування лінійних осесиметричних задач коливання рідини методом інтегральних рівнянь
Розробка ефективних чисельних методів для наближеного розв'язування лінійних задач коливання рідини в осесиметричних контейнерах. Дослідження методики на тестових прикладах для підтвердження застосовності алгоритмів і отриманих теоретичних оцінок похибок.
автореферат, добавлен 26.09.2015 Обґрунтування ітераційного методу знаходження одного з розв’язків системи задач на власні значення. Аналіз узагальнення класичного методу скалярних добутків визначення "старшої" пари матриці. Збіжність методу, основні приклади його застосування.
статья, добавлен 30.01.2017Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
дипломная работа, добавлен 29.01.2015Обчислення аналітичних оцінок стійкості системи лінійних алгебраїчних рівнянь за допомогою чисел обумовленості матриць. Аналіз абсолютної та відносної похибок розв’язків для збурених моделей. Використання програми Mathcad для створення зворотної матриці.
лабораторная работа, добавлен 31.10.2019Дослідження асимптотичних властивостей розв’язків лінійних диференціально-функціональних рівнянь нейтрального типу. Особливості знаходження достатніх умов асимптотичної стійкості тривіального розв’язку квазілінійних диференціально-функціональних рівнянь.
автореферат, добавлен 29.07.2014Пропозиція та обґрунтування схеми наближеного розв’язання крайової задачі за допомогою кубічних сплайнів дефекту два. Дослідження умов для лінійних диференціальних рівнянь із змінним запізненням. Побудова ефективних обчислювальних алгоритмів рішення.
статья, добавлен 25.08.2016Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Систематизація знань учнів. Усування помилок під час розв’язування вправ і задач, які зводиться до квадратних рівнянь. Навики розв’язку лінійних, квадратних, дробово-раціональних рівнянь. Мотивація навчальної діяльності учнів. Актуалізація опорних знань.
реферат, добавлен 29.01.2009Дослідження методу точного розв'язку задачі Карлемана у кільці для двох пар функцій в окремому випадку. Розгляд лінійних диференціальних, диференціально-різницевих та диференціальних рівнянь, які зводяться до задач Карлемана для смуги та кільця.
автореферат, добавлен 04.03.2014Особливості застосування ліївського методу до групової класифікації системи нелінійних рівнянь хемотаксису. Огляд застосування нелокальних перетворень еквівалентності системи нелінійних рівнянь дифузії для лінеаризації, побудови нелокальних анзаців.
автореферат, добавлен 27.07.2015Обчислювальні методи розв’язку нелінійних рівнянь. Методи лінійної алгебри. Знаходження визначника матриці методом алгебраїчних доповнень. Інтерполювання функцій. Методи чисельного інтегрування функцій. Розв’язування звичайних диференціальних рівнянь.
лекция, добавлен 13.09.2010Особливості дослідження умов існування обмежених на всій осі розв’язків слабко збурених лінійних та нелінійних систем звичайних диференціальних рівнянь, лінійна частина яких є нетеровий оператор. Розробка алгоритмів побудови розв'язків таких задач.
автореферат, добавлен 27.07.2014- 38. Метод Гаусса
Сутність і зміст методі Гауса, напрямки та сфери його практичного застосування: розв’язання загальної системи лінійних рівнянь, зведення до східчастого виду послідовним застосуванням елементарних перетворень. Зв'язок з розкладанням матриці на множники.
контрольная работа, добавлен 17.06.2015 Розроблення та опис прикладу алгоритму розв'язування лінійних рівнянь з однією змінною. Спрощення виразів в лівій та правій частинах рівняння окремо через розкриття дужок та зведення подібних доданків. Основні принципи знаходження невідомого множника.
лекция, добавлен 26.09.2018Розробка методу визначення всіх унікальних дільників поліноміальних матриць над довільним полем. Факторизація кліткових матриць над кільцями головних ідеалів за допомогою факторингу їх діагональних елементів і розрахунку лінійних матричних рівнянь.
автореферат, добавлен 25.07.2015Геометрична інтерпретація задач лінійного програмування. Застосування графічного методу для розв’язування двовимірних та деяких тривимірних задач та обмеження щодо його використання. Вивчення алгоритму графічного методу та прикладів розв’язування ЗЛП.
реферат, добавлен 14.12.2013Правила знаходження добутку та суми матриць, їх лінійні перетворення. Лінійний n-вимірний векторний простір, основні арифметичні дії з векторами. Власні числа і власні вектори матриці. Розв’язання лінійних рівнянь методом Гауса, приклади рішень.
учебное пособие, добавлен 19.11.2009Дослідження властивостей розв’язків нелінійних рівнянь, що виникають в конкретних задачах. Розробка алгоритму та створення комплексу програм для числового розв’язування задач. Числовий аналіз поведінки розв’язків, дослідження характеру їх галужень.
автореферат, добавлен 27.07.2014Розробка і застосування методики дослідження обернених задач, що базується на зведенні обернених задач до систем операторних рівнянь другого роду і аналізі методу параметрикса. Дослідження нехарактеристичної задачі Коші для рівняння теплопровідності.
автореферат, добавлен 15.11.2013Методика побудови загального псевдорозв’язку систем лінійних алебраїчних рівнянь. Аспекти псевдообернення матриць на системи з розподіленими параметрами для розв’язання оберненних задач динаміки цих систем в обмежених просторово-часових областях.
автореферат, добавлен 11.11.2013Дослідження асимптотики розв'язків систем диференціальних рівнянь, які є лінійним розширенням динамічної системи на торі. Умови існування асимптотично стійких інваріантних тороїдальних множини для лінійних та нелінійних систем диференціальних рівнянь.
автореферат, добавлен 14.08.2015Вивчення основ розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера та матричним методом, доведення теорем та виведення закономірностей. Властивості розв’язків лінійних неоднорідних систем. Особливості рішення задач Коші.
реферат, добавлен 19.11.2009Вивчення теми "Квадратні рівняння" у середній школі та її застосування. Означення та види квадратних рівнянь, способи їх розв’язування, застосування теореми Вієта. Розклад квадратного тричлена на лінійні множники. Методика вивчення квадратних рівнянь.
курсовая работа, добавлен 12.12.2018Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.
автореферат, добавлен 26.08.2015Приклад розв’язання системи лінійних алгебраїчних рівнянь з невідомими на прикладі виключення та заміни невідомого, однорідних та симетричних систем рівнянь, виключення спільного виразу, системи рівнянь з модулями та екстремуму функції кількох змінних.
лекция, добавлен 25.01.2014