Гіперболічна крайова задача математичної фізики в обмеженому кусково-однорідному просторовому середовищі
Побудова точного аналітичного розв'язку алгоритмічного характеру гіперболічної крайової задачі математичної фізики в обмеженому кусково-однорідному просторовому середовищі. Використання методу головних зв'язків (функцій впливу та функції Гріна).
Подобные документы
Дослідження існування глобальних класичних розв’язків у двофазній багатовимірній задачі Стефана для лінійного та квазілінійного рівнянь теплопровідности в задачах, які описують процеси горіння. Існування класичного розв’язку в стаціонарних задачах.
автореферат, добавлен 21.11.2013Встановлення умов існування та єдиності локального та глобального узагальнених розв'язків гіперболічних задач Стефана для систем рівнянь першого порядку з двома незалежними змінними. Удосконалення теорії диференціальних рівнянь з частинними похідними.
автореферат, добавлен 28.10.2015Ефективність застосування методу Канторовича і МЧАМ (матрицантного числово-аналітичного метода) до задачі про статичне деформування прямокутних пластин на пружній основі за дії трансверсального навантаження. Існування та єдиність узагальненого розв’язку.
статья, добавлен 30.01.2017Розробка програмного забезпечення для розв’язку задачі математичного характеру. Історія виникнення методу Крамера, характеристика його переваг, можливе використання. Створення алгоритму програми, перевірка отриманих розрахунків в програмі Excel.
курсовая работа, добавлен 28.11.2016Опис підпростору розв’язків задачі Коші для неявного, виродженого рівняння вищого порядку, знаходження ознак коректності. Оцінка початкового моменту апроксимації розв’язків неявного рівняння вищого порядку лінійними комбінаціями елементарних розв’язків.
автореферат, добавлен 28.08.2014Інтегральні та поточкові оцінки розв’язків відповідних модельних нелінійних еліптичних та параболічних задач Діріхле в областях з тонкими порожнинами. Асимптотичний розклад для послідовності розв’язків задач, які розглядаються та збіжність усіх членів.
автореферат, добавлен 23.11.2013Побудування розв’язку у просторі узагальнених функцій однорідної задачі Рімана для півплощини в особливому випадку. Доведення теорем його існування та єдиності. Отримання інтегрального зображення в смузі. Запропонування підходу до побудови розв’язків.
автореферат, добавлен 27.08.2014Вивчення проблеми знаходження конструктивних умов існування та побудови алгоритмів знаходження розв'язків нетерових крайових задач для лінійних і слабконелінійних систем диференціальних рівнянь з імпульсним впливом. Побудова узагальненого оператора Гріна.
автореферат, добавлен 28.08.2015Розробка та аналіз внутрішньої структури інтервальної математичної моделі в арифметичному евклідовому просторі. Метод розв'язання поставленої задачі на базі методів, призначених для розв'язання задач геометричного проектування, програмне забезпечення.
автореферат, добавлен 18.11.2013Дослідження питання існування неперервних розв'язків систем лінійних і нелінійних різницевих рівнянь із запізненнями, розробка методу їх побудови. Побудова для систем лінійних рівнянь представлення загального неперервного розв'язку і вивчення структури.
автореферат, добавлен 22.07.2014Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.
автореферат, добавлен 26.08.2015Методика визначення достатніх умов існування оптимальних параметрів у екстремальній задачі про дифузію у подвійному тиглі за рахунок отримання нового інтегрального зображення розв'язку рівняння дифузії у рухомому середовищі. Їх математичне обґрунтування.
автореферат, добавлен 29.08.2015Розв’язання задачі опуклого програмування. Використання методу січних площин. Знаходження опуклих ліпшіцевих функцій рівномірної апроксимації півнеперервного зверху компактнозначного відображення скінченновимірним підпростором неперервних відображень.
статья, добавлен 25.08.2016Особливість дослідження асимптотичної поведінки розв’язків диференційних рівнянь дробового порядку. Доведення повноти системи власних та приєднаних функцій крайової задачі із лінійними та нелінійними умовами. Характеристика теореми про базисність Ріса.
автореферат, добавлен 28.12.2015Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014Встановлення необхідних і достатніх умов існування розв'язків різних класів векторних задач дискретної оптимізації. Побудова математичних моделей та методів дослідження дискретних задач оптимізації в умовах невизначеності та оцінка їх ефективності.
автореферат, добавлен 12.07.2015- 67. Математичне та комп'ютерне моделювання фотохімічних процесів та визначення їх кінетичних параметрів
Розробка підходу для вибору межі локальної похибки методу чисельного розв'язання задач Коші, яка забезпечує отримання такого чисельного розв'язку, що зберігає фізичний зміст. Розв'язання задачі ідентифікації параметрів фотохімічного експерименту.
автореферат, добавлен 27.08.2014 Дослідження властивостей розв’язків нелінійних рівнянь, що виникають в конкретних задачах. Розробка алгоритму та створення комплексу програм для числового розв’язування задач. Числовий аналіз поведінки розв’язків, дослідження характеру їх галужень.
автореферат, добавлен 27.07.2014Застосування статистичних методів при обробці матеріалів психолого-педагогічних досліджень. Історія виникнення теорії ймовірностей і математичної статистики. Вибір методу статистичного аналізу, адекватного розв'язуваній психолого-педагогічній задачі.
контрольная работа, добавлен 24.04.2016Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле, що залишають незмінним точковий спектр, повноту та мінімальність системи власних функцій. Дослідження умови єдиності розв’язків збурених задач.
автореферат, добавлен 28.09.2015Розрахунок асимптотики спектру крайової задачі для бігармонічного оператора у двовимірній обмеженій області із сингулярним коефіцієнтом коло спектрального параметра. Аналіз впливу локальних точкових збурень густини на спектр крайової задачі Неймана.
автореферат, добавлен 28.07.2014Обґрунтування ітераційного методу знаходження одного з розв’язків системи задач на власні значення. Аналіз узагальнення класичного методу скалярних добутків визначення "старшої" пари матриці. Збіжність методу, основні приклади його застосування.
статья, добавлен 30.01.2017Дослідження рівномірного і поточкового коопуклого наближення неперервних на дійсній осі періодичних функцій тригонометричними і алгебраїчними поліномами та сплайнами. Нерівність Джексона-Стєчкіна. Приклад кусково-опуклої функції, що "погано" наближається.
автореферат, добавлен 26.07.2014Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014Розгляд поведінки власних значень та власних функцій. Вивчення характеру збіжності власних функцій задачі Діріхле для лінійного рівняння другого порядку в послідовності областей з дрібнозернистою межею до відповідних власних функцій граничної задачі.
автореферат, добавлен 24.06.2014