Исследование алгоритмов распознавания символов
Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.
Подобные документы
Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.
лабораторная работа, добавлен 14.12.2019Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.
статья, добавлен 28.10.2020Алгоритм обучения нейронной сети с помощью процедуры обратного распространения. Диаграмма сигналов в сети. Программирование нейронной сети с применением объектно-ориентированного подхода. Иерархия классов библиотеки для сетей обратного распространения.
статья, добавлен 25.03.2013Специфические особенности графического интерфейса программного приложения "Сурдофон". Характеристика принципа работы системы распознавания жестового языка с помощью нескольких видеокамер. Анализ упрощенной архитектуры рекуррентной нейронной сети.
статья, добавлен 24.02.2019- 57. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Описание основ построения нейронных сетей, включая сверточные нейросети. Рассматривается способ реализации механизма распознавания английских рукописных символов и цифр на основе полносвязной и свёрточной нейросетей с использованием фреймворка PyTorch.
статья, добавлен 06.09.2021Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.
статья, добавлен 17.07.2013Составление базы данных почасового электропотребления. Адаптация входных данных для обучения искусственной нейронной сети. Выбор алгоритма обучения нейронной сети. Выбор архитектуры нейронной сети. Трудности для прогнозирования электропотребления.
статья, добавлен 27.07.2017- 61. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Разработка программы распознавания действий человека. Работа с видеопотоком и классификатором. Выделение особенностей и структуры сверточной нейронной сети. Функции активации искусственного нейрона. Выделение контура из изображения и определение движения.
дипломная работа, добавлен 05.11.2015- 64. Применение нейронных сетей для построения модели прогнозирования состояния городской воздушной среды
Характеристика процессов распространения загрязняющих веществ в атмосфере. Описание нейросетевых моделей прогнозирования и определение их эффективности. Пример построения структуры нейронной сети для прогнозирования распределения диоксида азота.
статья, добавлен 29.05.2017 Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
курсовая работа, добавлен 21.02.2016MATLAB как пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Создание нейронной сети в графическом интерфейсе. Экспортирование созданной нейронной сети в рабочую область.
контрольная работа, добавлен 30.05.2016- 67. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 Автоматизация сбора, анализа и обработки данных в супермаркете. Разработка программы для распознавания лиц в живой очереди или изображений в реальном времени. Архитектура нейронной сети. Общий вид и назначение персептрона, оценка точности его работы.
статья, добавлен 25.02.2019Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.
реферат, добавлен 22.03.2019Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014Изучение определений и теорем потока сети, определение сводимости некоторых задач о максимальном потоке. Описание алгоритмов локального и кратчайшего увеличения цепей сети. Метод поразрядного сокращения невязок и Динамические деревья Слейтора-Тарьяна.
реферат, добавлен 22.11.2013Нейронные сети как аппаратные или программные средства, моделирующие работу человеческого мозга. Анализ проблем создания компьютерных систем речевого общения. Рассмотрение особенностей применения нейронных сетей для решения задач распознавания речи.
доклад, добавлен 12.12.2012