О N-мерных связных фигурах через призму топологии. Нахождение формулы количества ребер через количество точек
Рассмотрение многомерных фигур, от одномерного отрезка до шестимерного хексеракта. Анализ топологических характеристик многомерных фигур и закономерностей. Формула нахождения количества ребер фигуры, ее сравнение с теоремой Эйлера для многогранников.
Подобные документы
Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.
курс лекций, добавлен 22.11.2015- 102. Графическое описание
График как наглядное изображение статистических величин и их соотношений при помощи геометрических точек, линий, фигур или географических картосхем. Сферы и особенности их применения, порядок и принципы формирования, классификация и типы, свойства.
контрольная работа, добавлен 23.10.2013 Разрешение системы уравнений методом Крамера. Нахождение по координатам вершин треугольника АВС. Определение типа кривой второго порядка и ее основных геометрических характеристик. Формулирование и решение уравнения прямой; проходящей через две точки.
контрольная работа, добавлен 14.06.2015Сущность интерполяции, понятие разделенных и конечных разностей. Интерполяционная формула Лагранжа и Ньютона, вывод формулы Ньютона через разделенные разности и ее применение для равностоящих узлов интерполяции. Биноминальные многочлены. Теорема Polya.
курсовая работа, добавлен 15.06.2011- 105. Теорема Виета
Франсуа Виет - выдающийся французский математик, автор основ элементарной алгебры, буквенных обозначений и исчислений; формулы Виета — выражение коэффициентов многочлена через его корни; используются для проверки правильности нахождения корней многочлена.
презентация, добавлен 29.01.2012 Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.
курсовая работа, добавлен 21.09.2017Знакомство с описанием закономерностей аппроксимации частичной суммы обобщенного гармонического числового ряда. Анализ варианта аналитической оценки частичной суммы обобщенного гармонического ряда форме Эйлера. Особенности постоянной Эйлера-Маскерони.
статья, добавлен 12.05.2018Описание различных методов, позволяющих вычислить индекс Пуанкаре нулевых изолированных особых точек для плоских и многомерных векторных полей. Особенность отличия многомерного случая. Проведение исследования признаков гомотопности векторных полей.
статья, добавлен 26.04.2019Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.
учебное пособие, добавлен 19.12.2013История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Квазискалярное произведение двух точек на проективной плоскости. Общий вид формулы Эйлера. Пример телепортации прямой из гиперболической геометрии в эллиптическую. Внутренняя и наружная область окружности на сфере. Части тора, особенности геометрии.
статья, добавлен 03.05.2012Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Определение понятия симметрии и ее виды. Окружность и параллелограмм как простейшие фигуры, обладающие центральной симметрией. Примеры фигур, не имеющих центра симметрии (треугольник). Описание ее проявления в искусстве, архитектуре, технике и быту.
презентация, добавлен 22.12.2014- 114. Высшая математика
Определение координат векторов, которые образуют базис четырехмерного пространства. Нахождение неопределенных интегралов и проверка их дифференцированием. Вычисление площади фигуры, ограниченной графиками функций; абсцессы точек пересечения графиков.
контрольная работа, добавлен 26.11.2012 Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.
задача, добавлен 20.01.2014Определение первообразной функции. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.
контрольная работа, добавлен 05.04.2021Обоснование непрерывность элементарных функций для точки, у которой малые изменения аргумента приводят к малым изменениям математического значения. Анализ формулы гиперболических значений. Обзор сложной и обратной функций, а так же точек их разрыва.
лекция, добавлен 29.09.2013Нахождение вероятностей происхождения событий при заданных условиях. Формула полной вероятности и формула Байеса. Определение математического ожидания, дисперсии и среднеквадратического отклонения случайной величины. Нахождение плотности распределения.
контрольная работа, добавлен 19.03.2015Изучение свойств фигур на плоскости, основные понятия планиметрии и представления о геометрических телах. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного геометрического расположения и их значения относительно плоскости в аксиоме.
презентация, добавлен 13.04.2012- 120. Платоновы тела
История изучения правильных многогранников. Космический кубок Кеплера. Анализ его теории о связи многогранников с шестью открытыми к тому времени планетами Солнечной системы. Основные виды правильных многогранников в трёхмерном евклидовом пространстве.
презентация, добавлен 18.04.2016 Изучение научной деятельности Леонарда Эйлер – математика, который был избран академиком в восьми странах мира. Формулы для определения критической нагрузки при сжатии упругого стержня. Модель Эйлера и ее практическая польза в проведении экспериментов.
реферат, добавлен 28.10.2012Решение дифференциального уравнения численным методом. Исправленный и модифицированный метод Эйлера. Значение метода Эйлера. Описание алгоритма главной программы. Сравнение результатов полученных при использовании программы, а также ручным способом.
контрольная работа, добавлен 20.07.2012Методика проведения оптимизации заданного выражения. Нахождение числа, при котором функция принимает оптимальное значение. Аналитический способ нахождения локального минимума. Методы одномерного поиска. Одномерная оптимизация с использованием производных.
реферат, добавлен 21.11.2013Правила измерения геометрических величин. Методика изучения длин, величин углов, площадей и объемов фигур. Расчет радиуса описанной окружности. Определение биссектрисы угла треугольника. Использование теоремы Пифагора для нахождения гипотенуз и катетов.
задача, добавлен 19.12.2013Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015