Чисельне розв’язування лінійних прямих і нелінійних обернених еволюційних задач
Прямі лінійні, обернені нелінійні задачі. Початково-крайові для рівнянь параболічного та гіперболічного типів, включаючи векторний випадок (рівняння Нав'є-Стокса). Задачі реконструкції включення в обмеженому тілі за відомими даними Коші на границі тіла.
Подобные документы
Одержання нових інтегральних оцінок точності методу перетворення Келі для наближення операторних експоненти і косинуса та доведення їх непокращуваності за порядком. Побудова нового методу дискретизації задачі Коші для неоднорідного рівняння 1-го порядку.
автореферат, добавлен 28.08.2014Задачі Коші в класах початкових умов, які є узагальненими функціями з просторів і дослідженню властивостей фундаментального розв’язку. Простори основних та узагальнених функцій і властивості перетворення Фур’є, згорток, згортувачів та мультиплікаторів.
автореферат, добавлен 30.07.2014Апріорні оцінки сильних розв’язків задачі Діріхле та мішаної задачі для лінійних еліптичних недивергентних рівнянь другого порядку загального вигляду в околі ребра області за мінімальних вимог на коефіцієнти. Теореми існування розв’язків задачі Діріхле.
автореферат, добавлен 25.06.2014Двостороння оцінка максимуму розв’язку задачі Неймана у необмежених областях, що "звужуються на нескінченності" для параболічного рівняння, що вироджується з абсорбцією. Поведінка розв’язку мішаної задачі для рівняння в залежності від геометрії області.
автореферат, добавлен 26.08.2015Моделі гідродинаміки рівнянь Нав'є-Стокса. Уточнені початково-крайові задачі стоку мілкої води у гідродинамічному й кінематичному наближеннях. Проекційно-сіткові та рекурентні схеми для дискретизації задач. Їх стійкість, збіжність, програмна реалізація.
автореферат, добавлен 28.07.2014- 31. Розв'язування задачі оптимального керування правою частиною неоднорідного бігармонічного рівняння
Дослідження задачі знаходження оптимальної функції правої частини неоднорідного бігармонічного рівняння, для розв'язування якої використовується один з варіантів градієнтного методу. Розв'язання системи інтегральних рівнянь Фредгольма першого роду.
статья, добавлен 27.09.2016 Властивості операторів узагальненого диференціювання Гельфонда-Леонтьєва. Встановлення розв'язності задачі Коші для еволюційних рівнянь з псевдо-Бесселевими операторами нескінченного порядку та умовами, які є узагальненими функціями типу розподілів.
автореферат, добавлен 27.08.2015Встановлення умови коректності динамічних крайових задач без початкових умов для еліптичних, параболічних і еліптико-параболічних рівнянь, абстрактних неявних еволюційних вироджених рівнянь, неявних еволюційних субдиференцiальних та параболічних включень.
автореферат, добавлен 14.07.2015Особливості прямих та обернених теорем теорії наближень. Визначення аналогів нерівностей Джексона і Бернштейна. Оцінка похибки наближених розв’язків задачі Коші для диференціально-операторних рівнянь методом Келі. Побудова векторів експоненціального типу.
автореферат, добавлен 28.09.2015Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
контрольная работа, добавлен 08.11.2017Одержання інтегрального зображення точного аналітичного розв'язку мішаної задачі для системи рівнянь параболічного типу. Аналіз моделювання еволюційного процесу методом гібридного диференціального оператора Бесселя-Лежандра-(Конторовича-Лєбєдєва).
статья, добавлен 04.02.2017Аналіз і оцінка композиції полярних ядер, значень спряжених операторів Ґріна нормальної крайової задачі для параболічної системи диференціальних рівнянь. Дослідження характеру точкових особливостей розв'язку нелінійного інтегрального рівняння Вольтерри.
автореферат, добавлен 28.10.2015З’ясування розв'язку задачі Коші. Розгляд параболічного за Петровським рівняння довільного порядку. Наявність членів з лінійно зростаючими на нескінченності коефіцієнтами. Відсутність залежності від просторових змінних. Застосування перетворення Фур'є.
статья, добавлен 25.08.2016Дослідження умов існування та єдиності локальних і глобальних розв’язків нескінченних систем диференціальних рівнянь, що описують нескінченні ланцюги лінійно зв’язаних нелінійних осциляторів. Нелінійні різницеві рівняння з варіаційною структурою.
автореферат, добавлен 30.08.2014Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.
автореферат, добавлен 26.08.2015Вивчення фундаментального розв'язку задачі Коші. Дослідження диференціальних властивостей, граничної поведінки та одержання оцінок у різних нормах потенціалів. Встановлення коректної розв'язності задачі Коші в широких класах функціональних просторів.
автореферат, добавлен 10.01.2014- 42. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Методика побудови узагальненого оператора Гріна для лінійних систем диференціальних рівнянь із імпульсним впливом. Розв’язок нетерової слабконелінійної крайової задачі для системи звичайних диференціальних рівнянь за алгоритмом Ньютона–Канторовича.
автореферат, добавлен 28.08.2015Дослідження властивостей розв’язків нелінійних рівнянь, що виникають в конкретних задачах. Розробка алгоритму та створення комплексу програм для числового розв’язування задач. Числовий аналіз поведінки розв’язків, дослідження характеру їх галужень.
автореферат, добавлен 27.07.2014Розгляд фундаментального розв’язку задачі Коші. Параболічні системи типу Шилова із залежними від просторової змінної молодшими коефіцієнтами. Дослідження властивостей параболічних рівнянь із змінними коефіцієнтами обмеженої гладкості та невід’ємним родом.
статья, добавлен 25.08.2016Розроблення алгоритму розв'язування систем лінійних алгебраїчних рівнянь матрицями тригонометричних поліномів, які є модифікаціями прямих числових методів лінійної алгебри на неунітарних перетвореннях та програмування з дробово-лінійною функцією.
автореферат, добавлен 25.04.2014Застосування методу Ньютона для системи двох нелінійних рівнянь. Чисельне розв’язування інтегральних рівнянь: розв’язування рівнянь Фредгольма методом кінцевих сум. Інтерполяційні формули Гаусса, Стірлінга, Бесселя. Квадратурні формули Чебишева та Гаусса.
контрольная работа, добавлен 15.01.2020Встановлення існування та єдиності розв'язку оберненої задачі визначення залежного від часу коефіцієнта при похідній за часом в одновимірному параболічному рівнянні. Задача визначення невідомого коефіцієнта, коли умови перевизначення є нелокальними.
автореферат, добавлен 25.08.2015- 49. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Доведення теорем про пов’язані з лінійною задачею Коші функціонально-диференціальні нерівності. Отримання ряду умов, які гарантують однозначну розв’язність початкової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду.
автореферат, добавлен 29.07.2014 Поява диференціальних рівнянь. Методи збурень, які використовуються в механіці. Умови існування періодичних розв’язків. Теореми про граничні значення. Нелінійні диференціальні рівняння другого порядку. Методи розв’язання деяких типів нелінійних рівнянь.
курсовая работа, добавлен 22.06.2012