Устойчивость в случае нейтральности линейного приближения
Линеаризация как основной прием изучения устойчивости особой точки системы обыкновенных дифференциальных уравнений. Устойчивая, нейтральная и неустойчивая линеаризация. Способ отыскания инвариантных лучей системы. Построение линейной функции Ляпунова.
Подобные документы
Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.
автореферат, добавлен 17.12.2017Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.
курсовая работа, добавлен 23.10.2017Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.
курсовая работа, добавлен 27.03.2011История зарождения и создания линейного программирования. Разработка симплекс-метода и рассмотрение задач отыскания условного экстремума функции. Графический способ решения различных задач линейного программирования, изображение геометрических условий.
курсовая работа, добавлен 04.04.2011Рассмотрение математических моделей динамических объектов, представляющих собой линейные и нелинейные системы дифференциальных уравнений. Анализ результатов использования методов теории устойчивости, математического анализа, линейной и высшей алгебры.
автореферат, добавлен 15.02.2018Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
контрольная работа, добавлен 02.05.2013Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.
реферат, добавлен 29.11.2015Качественный анализ линейной и нелинейной динамических систем, определение условий их устойчивости и построение фазовых портретов в программе WINSET. Вычисление дифференциальных уравнений Бюргерса. Компьютерное исследование уравнения на фазовой плоскости.
контрольная работа, добавлен 10.02.2013Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.
автореферат, добавлен 26.01.2018Представление подводной лодки в виде материальной точки с приложением действующих на нее сил. Выведение системы дифференциальных уравнений и получение траектории движения лодки, заданной параметрически. Численные решения системы и построение графиков.
творческая работа, добавлен 14.02.2011Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.
статья, добавлен 31.05.2013Области прикладного применения систем компьютерной математики для численных и аналитических расчетов. Возможности программы Wolfram Mathematica. Примеры решения обыкновенных дифференциальных уравнений и геометрических задач в системе Wolfram Mathematica.
статья, добавлен 16.07.2018Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.
статья, добавлен 02.02.2019Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Алгоритм нахождения интегральных кривых однородных уравнений первого порядка. Исследование интегральных кривых уравнения. Описание решения ряда задач, характеризующих свойства однородных дифференциальных уравнений. Методы построения интегральных кривых.
дипломная работа, добавлен 21.04.2023Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.
статья, добавлен 27.04.2019Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.
статья, добавлен 26.10.2010Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
лекция, добавлен 29.09.2014Особенности системы дифференциальных уравнений как автономной системы для функций x (t) и y (t). Специфика картины фазовых кривых, называемой фазовым портретом системы. Анализ расположения траекторий, определяемого корнями характеристического уравнения.
курсовая работа, добавлен 29.11.2015Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.
лабораторная работа, добавлен 09.12.2019Решение системы линейных алгебраических уравнений с тремя неизвестными. Решение системы уравнений методом Крамера. Построение опорного плана транспортной задачи и проверка его оптимальности, построение симплекс-таблицы. Поиск точек экстремума функции.
контрольная работа, добавлен 05.11.2012