Методы решения краевых задач, в том числе "жестких" краевых задач
Случай переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Решение задач методами краевых условий, прогонки С.К. Годунова, половины констант. Применяемые формулы построчного ортонормирования.
Подобные документы
Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Ю.А. Виноградов - автор метода преодоления трудностей неустойчивого счета путем разделения интервала интегрирования на сопрягаемые участки. Методика расчета оболочек вращения, где каждый участок может выражаться своими дифференциальными уравнениями.
статья, добавлен 26.06.2016Критерии непрерывности зависимости решений обыкновенного дифференциального уравнения, уравнения в частных производных. Нахождение приближенного решения краевых задач с оценкой погрешности. Математическая модель для решения задач механики сплошных сред.
автореферат, добавлен 02.03.2018Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.
автореферат, добавлен 26.01.2018Численное решение системы дифференциальных уравнений. Решение задач интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом с использованием программы Matlab сведением в графики и таблицы.
курсовая работа, добавлен 10.03.2020Проведение исследования основных нелокальных краевых задач для дифференциальных и псевдодифференциальных уравнений. Характеристика важнейших преобразований Фурье по пространственным переменным. Существенная особенность изучения параболических заданий.
статья, добавлен 30.10.2016- 32. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
статья, добавлен 29.04.2018 Связь нелокальных задач с нагруженными уравнениями. Понятие управления решения дифференциальных (нагруженных) уравнений со скоростью. Рассмотрение скорости изменения величин как характеристики исследования процессов. Вычисление исправленной производной.
статья, добавлен 20.05.2018Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.
статья, добавлен 31.05.2013Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018Решение краевых задач для одномерных дифференциальных уравнений дробного порядка методом Фурье. Дифференциальное уравнение адвекции-диффузии. Собственные функции, функция Миттаг-Леффлера. Применение задачи в теории течения жидкости во фрактальной среде.
статья, добавлен 21.06.2018Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010Численный эксперимент геометрической интерпретации трехдиагональных систем. Установление однозначной разрешимости в алгоритмах сплайновых аппроксимаций, при решении краевых задач для дифференциальных уравнений второго порядка и математической физики.
статья, добавлен 28.01.2019Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.
курсовая работа, добавлен 09.02.2019Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.
курсовая работа, добавлен 04.03.2020Описание разновидностей потенциалов, свойств потенциалов простого и двойного слоя. Постановка и решение краевых задач для уравнений Лапласа и Пуассона в пространстве, их сведение к интегральным уравнениям. Нахождение объемного потенциала однородного шара.
курсовая работа, добавлен 18.12.2016Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.
курсовая работа, добавлен 10.02.2019Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.
курсовая работа, добавлен 20.02.2019Введение дополнительных переменных. Разделение области возможных значений переменных и параметров. Вспомогательные преобразования, приводящие к упрощению выражений. Применение классических формул. Несколько примеров решения задач описанными методами.
контрольная работа, добавлен 08.02.2011Рассмотрение логических или нечисловых задач, которые составляют обширный класс нестандартных задач. Анализ разных способов решения логических задач. Особенности методов рассуждений, таблиц, графов, блок-схем, бильярда, метода с помощью кругов Эйлера.
статья, добавлен 25.02.2019Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.
учебное пособие, добавлен 26.03.2014Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014