Уравнения в декартовой системе координат
Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.
Подобные документы
Операция отыскания производной - дифференцирование функции. Механический и геометрический смысл производной. Пример нахождения производной функции, исходя из ее определения. Определение логарифма, ввод новой переменной, дифференциация частей уравнения.
лекция, добавлен 17.05.2021Особенности декартовой системы координат в трехмерном пространстве. Понятие предела, непрерывность функции нескольких переменных. Свойства функций непрерывных в ограниченной замкнутой области. Определение частной производной функции нескольких аргументов.
контрольная работа, добавлен 29.05.2015Вычисление предела функции. Составление уравнения касательных, перпендикулярных прямой, проходящей через заданные точки, к графику функции. Нахождение неопределенного и определенного интегралов. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 21.09.2013Характеристика функций и графиков функций: определения и понятия. Функции и их свойства: линейная, обратной пропорциональности, квадратичная, степенные. Движение функций по осям координат. Влияние модуля на функции: модуль и обратная пропорциональность.
реферат, добавлен 15.08.2014Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.
лекция, добавлен 07.07.2015- 31. Функция
Развитие понятия функции. Математический анализ и его две основные части: дифференциальное и интегральное исчисления. Определение функции и графика функции. Область определения и область значений функции. Виды функций: четные, нечетные, периодические.
реферат, добавлен 16.05.2012 Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.
контрольная работа, добавлен 01.05.2010Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.
контрольная работа, добавлен 30.06.2021По плану исследовать функцию и построить её график: область определения, точки разрыва, корни уравнения, точки перегиба. Решить систему методом Гаусса: расширенная матрица. Вычислите площадь фигуры, ограниченной графиками функций. Вычислите интеграл.
задача, добавлен 03.05.2009Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.
лекция, добавлен 01.09.2017Исследование линейного уравнения с двумя переменными. Определение понятия квадратных уравнений. Ознакомление с особенностями уравнений высших степеней сводящиеся к квадратным. Изучение процесса нахождения точек пересечения графика с осями координат.
контрольная работа, добавлен 16.02.2023Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.
курсовая работа, добавлен 12.01.2021Установление точек разрыва функции, составление уравнения асимптот. Поиск координат вершины параболы. Определение условий существования экстремума в стационарной точке. Поиск интеграла по формуле Ньютона-Лейбница. Решение дифференциального уравнения.
контрольная работа, добавлен 25.03.2014Понятие и сущность кривой второго порядка, определение координат центра и радиуса окружности. Специфика и описание эллипса, построение декартовой системы координат. Характеристика канонического уравнения гиперболы и параболы, их отличительные черты.
лекция, добавлен 09.07.2015Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
презентация, добавлен 21.09.2013Рассмотрение кривых, имеющихся в полярной системе координат. Определение площади фигуры, ограниченной линиями. Вычисление двойного интеграла в полярной системе координат. Расчет уравнения геометрической окружности с центром в определенной точке.
контрольная работа, добавлен 05.06.2014Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.
курс лекций, добавлен 07.03.2015Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.
контрольная работа, добавлен 21.10.2010Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.
курсовая работа, добавлен 23.04.2011Вертикальные, наклонные и горизонтальные асимптоты графика функции. Использование правила Лопиталя для раскрытия неопределённости. Вычисление правостороннего предела. Решение квадратного уравнения. Исследование графика функции на наличие асимптот.
лекция, добавлен 09.04.2016Деление чисел с использованием теоремы о делении с остатком. Представление геометрической интерпретации комплексных чисел, определение их модулей. Применение диафантова анализа. Вычисление матриц и пределов. Нахождение производных заданных функций.
контрольная работа, добавлен 21.01.2015Понятие системы координат. Использование прямоугольной (декартовой), полярной, цилиндрической, сферической системы координат при решении задач. Определение координат радиус-вектора. Формулы перехода от цилиндрических и сферических координат к декартовым.
реферат, добавлен 16.05.2016Годограф вектор функции. Проекции вектора на оси прямоугольной декартовой системы координат в пространстве. Предел, непрерывность, производная вектор-функции. Правила дифференцирования. Касательная, нормаль к плоской кривой. Кривизна, радиус кривизны.
реферат, добавлен 02.10.2013Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.
контрольная работа, добавлен 04.12.2011Задачи на определение функции пользователя и вычисление ее значения для различных значений аргумента. Примеры решения нелинейного уравнения различными методами. Выполнение проверки корней уравнения графически и подстановкой корней в исходное уравнение.
контрольная работа, добавлен 03.06.2011