Розв’язок крайових задач теорії потенціалу та теорії пружності для тіл з кутовими точками
Розробка схеми розв’язання та побудова точних розв’язків задач теорії потенціалу для просторових тіл з кутовими точками. Особливості використання інтегральних розвинень по функціях Лежандра типу Мелера-Фока в просторових задачах теорії пружності.
Подобные документы
Нові класи дискретних систем типу Вінера – Хопфа, побудова теорії розв’язності на основі еквівалентних сингулярних інтегральних рівнянь. Порядки швидкості спадання систем при зростанні індексів, оцінка кількості незалежних розв’язків неоднорідних систем.
автореферат, добавлен 28.09.2015Аналітичний метод для дослідження обернених задач розсіяння, що виникають у теорії розповсюдження електромагнітних хвиль. Побудова теорії інтегрування початково-крайових задач. Методи аналітичної факторизації, заснованих на задачі Рімана-Гільберта.
автореферат, добавлен 14.09.2015Особливості прямих та обернених теорем теорії наближень. Визначення аналогів нерівностей Джексона і Бернштейна. Оцінка похибки наближених розв’язків задачі Коші для диференціально-операторних рівнянь методом Келі. Побудова векторів експоненціального типу.
автореферат, добавлен 28.09.2015Розв'язання крайових задач в густих сингулярно вироджувальних з'єднаннях. Спектральні і еліптичні крайові задачі другого порядку із швидко осцилюючими коефіцієнтами в тонких перфорованих областях. Асимптотична поведінка власних функцій крайових задач.
автореферат, добавлен 18.04.2014Вивчення застосування методу Фур'є до задач математичної фізики для гіперболічного рівняння. Дослідження оцінки розподілу супремуму розв'язання рівняння коливання струни та аналіз застосування отриманих результатів до моделювання розв'язання рівняння.
автореферат, добавлен 30.08.2014Побудова та обґрунтування алгоритмів для розв’язання деяких класів оптимізаційних задач. Розробка алгоритму розв’язання сформульованої задачі групового вибору з розбиттям множини виборців на підгрупи. Рекомендації щодо вибору параметрів алгоритмів.
автореферат, добавлен 11.10.2011Побудова еквівалентної крайової задачі з параметрами та лінійними крайовими умовами, що розглядається з певною системою визначальних рівнянь. Схема розв’язків багатоточкових крайових задач шляхом зведення їх до двоточкових, застосовуючи параметризацію.
автореферат, добавлен 25.08.2014Теорії геометричного моделювання узагальнених паралельних множин для розв’язання задач формоутворення геометричних об’єктів. Їх опис за допомогою нормальної і нормалізованої функцій та шляхом розв’язання диференціальних рівнянь Гамільтона–Якобі.
автореферат, добавлен 29.09.2015Розробка методу, за допомогою якого можна побудувати теорію Нетера та дослідити властивості нових класів дискретних систем типу Вінера-Хопфа на основі теорії сингулярних інтегральних рівнянь та їх систем. Характеристика теорії розв’язності систем.
автореферат, добавлен 26.02.2015Встановлення умов існування та єдиності локального та глобального узагальнених розв'язків гіперболічних задач Стефана для систем рівнянь першого порядку з двома незалежними змінними. Удосконалення теорії диференціальних рівнянь з частинними похідними.
автореферат, добавлен 28.10.2015Розв'язання задач з теорії множин та математичної логіки за допомогою діаграм Ейлера-Вена. Аналіз поняття істинності висловлювань. Визначення характеристик графа, побудова матриці інцидентності. Побудова амплітудно–частотної характеристики сигналу.
контрольная работа, добавлен 20.12.2017- 37. Про модифікацію узагальненого методу розв’язання інтегральних рівнянь типу Фредгольма другого роду
Визначення апріорної оцінки похибки методу. Побудова модифікації узагальненого методу розв’язання рівнянь. Описання інтегральних рівнянь типу Фредгольма. Розгляд питання про оцінку похибки наближеного розв’язання рівняння запропонованим методом.
статья, добавлен 30.01.2017 Розвиток теорії евклідової комбінаторної оптимізації в геометричному проектуванні шляхом дослідження властивостей спеціальних класів цільових функцій на множині поліпереставлень. Дослідження математичних моделей, розробка методів розв’язання класу задач.
автореферат, добавлен 29.09.2015Розробка чисельно-аналітичного методу А.М. Самойленка для оцінки існування та наближеної побудови розв'язків нелінійних систем диференціальних рівнянь. Аналіз можливих періодів розривних циклів лінійних автономних імпульсних систем другого порядку.
автореферат, добавлен 14.07.2015Точні умови усунення особливостей розв’язків загальних дивергентних квазілінійних еліптичних рівнянь з абсорбцією, а також тих, які узагальнюють умови Дж. Серріна. Метод оцінок розв’яків типу "потенціалу" на випадок квазілінійності параболічних рівнянь.
автореферат, добавлен 07.08.2014Розглянуто особливості використання генетичного алгоритму (ГА) для розв’язання оптимізаційних задач. Наведено класифікацію оптимізаційних задач. Детально описано структурні елементи генетичного алгоритму та їх роль для розв’язання задачі комівояжера.
статья, добавлен 19.03.2024- 42. Розв’язок задач стійкості пластин при неоднорідному докритичному стані за допомогою методу R-функцій
Розробка ефективних методів розрахунку на міцність тонкостінних елементів. Вивчення закономірності поведінки пластин в залежності від способів закріплення та анізотропії матеріалу. Обчислення інтегральних характеристик з використанням теорії R-функцій.
автореферат, добавлен 24.06.2014 Основні поняття теорії ігор, їх класифікація. Матричні ігри для двох осіб та геометрична інтерпретація гри 2х2. Вимірювання економічного ризику за допомогою теорії ігор. Приклади розв’язання задач на вибір оптимальної стратегії в іграх з природою.
курсовая работа, добавлен 10.12.2011Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Значення історії математики у стимулюванні пізнавальних можливостей майбутніх вчителів. Роль сучасної математичної освіти у виявленні особистісних якостей. Система історичних задач з теорії чисел. Сучасний підхід у розв’язанні старовинних задач.
статья, добавлен 10.03.2013Побудова процедури для наближення розв'язку задачі тригонометричними поліномами. Застосування пакета Maple в навчальному процесі під час вивчення вищої математики. Підвищення рівня фундаментальності математичної освіти. Розв'язання типових задач.
статья, добавлен 30.07.2016Дослідження розв’язностей та побудова розв’язків задач з нелокальними крайовими умовами за часовою змінною для рівнянь та систем рівнянь із частинними похідними першого порядку за часовою змінною і порядку за просторовими змінними сталими коефіцієнтами.
автореферат, добавлен 14.09.2014Розробка нових ефективних методів розв’язання крайових задач для еліптичних систем диференціальних рівнянь з частинними похідними на основі методу р-аналітичних функцій за допомогою їх інтегральних зображень через граничні значення аналітичних функцій.
автореферат, добавлен 23.11.2013- 49. Компактні різницеві схеми високого порядку точності для нелінійних звичайних диференціальних рівнянь
Побудова точних компактних різницевих схем розв’язування крайових задач для нелінійних звичайних диференціальних рівнянь. Розробка алгоритмічної реалізації точних компактних схем через відсічені компактні різницеві схеми довільного порядку точності.
автореферат, добавлен 14.09.2014 Оцінка інтегральних зображень узагальненого осесиметричного потенціалу через аналітичні функції комплексної змінної. Редукція деяких крайових задач до інтегральних рівнянь Фредгольма другого роду на дійсній осі за розширених умов на границю області.
автореферат, добавлен 29.08.2015