Отображение плоскости на себя
Отображение плоскости на себя как преобразование, где точкам исходной плоскости сопоставляются точки этой же плоскости. Типы движений на плоскости: параллельный перенос, осевая симметрия, поворот вокруг точки, центральная симметрия. Свойства гомотетии.
Подобные документы
Понятие симметрии и ее элементов и описание ее простейших видов. Доказательство движения центральной симметрии. Рассмотрение симметрии таких фигур как отрезок, треугольник и многоугольник, а также геометрических тел. Симметричность относительно точки.
доклад, добавлен 01.08.2009- 102. Интегрирование ФКП
Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.
презентация, добавлен 17.09.2013 Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.
книга, добавлен 28.12.2013Определение уравнения прямой. Расчет координаты точки, уравнения плоскости. Вычисление координаты точки пересечения двух прямых, длины отрезка, отсекаемого от оси абсцисс плоскостью, проходящей через прямую. Анализ формы кривой по заданному уравнению.
контрольная работа, добавлен 29.10.2012- 105. Метрические задачи
Определение точки, симметричной данной относительно плоскости. Построение разверток поверхностей, многогранника, кривых и цилиндрических поверхностей. Построение точки пересечения линии и поверхности. Построение линии пересечения двух плоскостей.
презентация, добавлен 09.03.2015 Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.
лекция, добавлен 29.09.2014Комплексное векторное пространство. Теорема Пэли-Винера Шварца. Семейство голоморфных функций в области комплексной плоскости. Функции вещественной переменной. Линейное отображение, обладающее свойством непрерывности. Линейный непрерывный функционал.
контрольная работа, добавлен 15.07.2016Формулирование условий перпендикулярности двух прямых общего положения. Определение на чертеже расстояния от точки до прямой частного положения. Построение точки пересечения плоскости с прямой линией общего положения и линии пересечения двух плоскостей.
лекция, добавлен 24.07.2014Исследование основных научных гипотез, раскрывающих математическую сущность декартовой системы координат и вычислений. Рассмотрение методов решения уравнений прямой на плоскости. Формульное выражение объекта при наличии заданной точки или отрезков.
презентация, добавлен 01.09.2015- 110. Свойства гиперболы
Понятие гиперболы как геометрического места точек разности расстояний. Процесс построения канонического уравнения. Характеристика главных свойств гиперболы. Понятие параболы как геометрического места точек плоскости равноудаленных от фиксированной точки.
лекция, добавлен 23.10.2013 Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.
шпаргалка, добавлен 25.03.2011Правила начертания и основные назначения линий на чертежах всех отраслей промышленности. Способы преобразования проекций. Расчет расстояния от точки до плоскости. Построение линии пересечения плоскостей. Взаимное пересечение поверхностей вращения.
методичка, добавлен 23.09.2011- 113. Высшая математика
Действия над векторами. Декартова прямоугольная система координат, понятие базиса. Уравнение плоскости в пространстве. Нахождение начальной точки и направляющего вектора прямой. Кривые линии II порядка: парабола и гипербола. Основные теоремы о пределах.
шпаргалка, добавлен 14.01.2010 Обозначение множества точек на отрезке прямой плоскости. Характеристика коллинеарных векторов расположенных на одной либо на параллельных прямых. Анализ правил сложения на примере треугольника и параллелограмма. Обзор проекции произведения слагаемых.
лекция, добавлен 29.09.2013Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.
разработка урока, добавлен 20.12.2010Понятие параллельных плоскостей. Невозможные структуры де Мея. Параллельность в природе. Использование математических теорем при доказательстве геометрического признака. Параллельность боковых сторон трапеции. Наличие общих точек у прямой и плоскости.
презентация, добавлен 09.02.2014Основные закономерности и содержание геометрии Лобачевского, понятие псевдосферы, модели Клейна и Пуанкаре. Анализ поверхности постоянной отрицательной кривизны. Аксиоматика евклидовой геометрии: связь прямой и точки, отрезка непрерывности и плоскости.
реферат, добавлен 21.10.2014Понятие алгебраической кривой второго порядка. Окружность – множество, состоящее из всех точек плоскости, находящихся на равном расстоянии от фиксированной точки. Определение окружности для вывода ее уравнения. Фокусы эллипса и эксцентриситет эллипса.
контрольная работа, добавлен 09.12.2016- 119. Исследование функций
Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.
шпаргалка, добавлен 11.04.2012 Методы отображения пространственных объектов на плоскости. Способы графического и аналитического решения различных геометрических задач. Центральное проецирование. Сущность метода проекции с числовыми отметками. Взаимное расположение точки и прямой.
курс лекций, добавлен 25.12.2010Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.
методичка, добавлен 09.04.2012Использование математической науки в профессиональной деятельности повара. Цилиндр - тело, состоящее из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.
презентация, добавлен 29.12.2016Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.
курсовая работа, добавлен 03.11.2018Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
презентация, добавлен 01.09.2015Сущность проекционного черчения. Способы получения графических изображений. Рассмотрение центрального и параллельного проецирования. Ортогональные проекции и основные виды чертежа. Проецирование точки на три плоскости проекций координатного угла.
лекция, добавлен 27.09.2017