Основные концепции нейронных сетей
Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
Подобные документы
Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.
статья, добавлен 17.03.2021- 27. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.
методичка, добавлен 03.07.2017Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.
дипломная работа, добавлен 07.08.2018Сеть Хопфилда: понятие, слои, граница емкости памяти, структурная схема. Пороговая передаточная функция. Обучение сети Хемминга, алгоритм функционирования. Весовые коэффициенты тормозящих синапсов. Определение состояния нейронов второго слоя сети.
статья, добавлен 17.07.2013Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Понятие, структура и основные компоненты нейронных сетей, применение множества простых процессоров для их построения. Варианты наиболее распространенных архитектур искусственных НС. Правило вычисления сигнала активности и их распространение в сети.
лекция, добавлен 28.08.2013Теоретическое обоснование использования нейронных сетей при распознавании образов. Обоснование необходимости и основные этапы, перспективы разработки устойчивых алгоритмов, которые распознавали бы образы с различным уровнем зашумленных входных образов.
статья, добавлен 26.11.2017Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020Общее описание нейронных сетей, их виды: однослойные и многослойные сети, персептрон, сети Хопфилда. Описание программных моделей и алгоритмов их обучения. Релаксация стимула, возникновение ложного образа и выработка прототипа, бистабильность восприятия.
контрольная работа, добавлен 12.05.2015Разработка системы, производящей кластеризацию объектов по ряду признаков. Выявление кластеров (групп) входных векторов, обладающих некоторыми общими свойствами. Идея векторного квантования. Обучение сети Кохонена. Конкурирующая функция активации.
контрольная работа, добавлен 13.01.2017Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.
статья, добавлен 27.04.2017Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.
курсовая работа, добавлен 16.05.2016Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019- 45. Нейронные сети
Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.
реферат, добавлен 09.06.2016 Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 28.03.2022Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 10.04.2023Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.
книга, добавлен 07.03.2014Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018