Краевые задачи для квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью
Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.
Подобные документы
Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.
курсовая работа, добавлен 06.04.2014Основные понятия об обыкновенных дифференциальных уравнениях. Обзор разновидностей дифференциальных уравнений 1-го порядка. Обобщенное однородное уравнение. Уравнение Бернулли. Дифференциальные уравнения в полных дифференциалах. Интегрирующий множитель.
лекция, добавлен 18.12.2011Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.
статья, добавлен 26.04.2019Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.
курсовая работа, добавлен 06.05.2015Иван Георгиевич Петровский - известнейший и талантливейший математик XX века: талантливый организатор и общественный деятель, автор современной теории дифференциальных уравнений, многих научных работ которые используются в разных областях математики.
реферат, добавлен 05.03.2009Сформулированы модельные краевые задачи и результаты автора для уравнений смешанного типа в канонических областях. Эти задачи возникают в теории тонких оболочек, в теории самолетостроения. Приведены основные результаты отечественных и зарубежных авторов.
статья, добавлен 30.01.2019Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021Описание биологических обществ с помощью дифференциальных уравнений. Химическая кинетика и выражение химических реакций с помощью так называемых стехиометрических уравнений. Дифференциальные уравнения в медицине на примере математической модели эпидемии.
курсовая работа, добавлен 13.12.2016Анализ систем сингулярно возмущенных обыкновенных дифференциальных уравнений. Рассмотрение системы сингулярно возмущенных обыкновенных дифференциальных уравнений с аналитическими функциями в комплексной области. Области притяжения вырожденной системы.
статья, добавлен 11.11.2018Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Изучение квантильных дифференциальных уравнений Пфаффа, которые строятся на основе двухмерных условных квантилей многомерных вероятностных распределений. Исследование основных вероятностных свойств интегральных многообразий максимальной размерности.
статья, добавлен 31.05.2013- 113. Заметка о необходимости создания инструментальных средств для решения дифференциальных уравнений
Численное решение дифференциальных уравнений как интерактивный процесс взаимодействия человека или неформальных и формальных процедур по поиску аналитического описания интегральной кривой или ее вида. Традиционный и нетрадиционный процесс решения дифур.
статья, добавлен 25.08.2020 - 114. Высшая математика
Изучение разделов линейной и векторной алгебры, аналитической геометрии, основ математического анализа и операционного исчисления. Рассмотрение примеров решения двойных, тройных, криволинейных и поверхностных интегралов, дифференциальных уравнений.
учебное пособие, добавлен 12.02.2016 Системы дифференциальных уравнений. Непрерывно дифференцируемые или абсолютно непрерывные функции. Математическое описание управляемой системы с обратной связью. Теоремы существования решений для дифференциальных включений в конечномерном пространстве.
контрольная работа, добавлен 03.02.2011Условия существования и единственности непрерывных решений начальной задачи Коши для стационарных систем функционально-разностных уравнений. Основные методы нахождения функциональных зависимостей. Понятия оператора монодромии и эволюционного оператора.
автореферат, добавлен 10.12.2013Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.
практическая работа, добавлен 12.12.2019Существование и единственность решения задачи для псевдопараболического и гиперболического уравнений четвертого порядка, когда условия склеивания задается на не характеристической линии. Сведение решаемой задачи к решению системы интегральных уравнений.
статья, добавлен 18.05.2016Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.
курсовая работа, добавлен 11.04.2014Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Назначение, области применения, достоинства и недостатки компьютерной системы для персонального компьютера Mathematica. Введение данных и решение дифференциальных уравнений Абеля и Дарбу математически, в аналитической форме, в системе Mathematica.
курсовая работа, добавлен 04.08.2012Приближенное решение определенного интеграла от непрерывной функции, расчет погрешностей. Способы решения дифференциальных уравнений. Абсолютная и условная сходимость числовых и степенных рядов. Интервал, свойства и радиус сходимости степенного ряда.
контрольная работа, добавлен 06.06.2015Описание сути интегральных уравнений третьего рода, а также характеристика направлений их исследований. Формулировка краевой задачи Гильберта. Решение интегрального уравнение третьего рода по теореме Нетера, доказательство его нормальной разрешимости.
статья, добавлен 18.05.2016Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015