Кривые постоянной ширины
Понятие кривой постоянной ширины. Симметричная кривая постоянной ширины с закругленными углами. Тела постоянной ширины. Сверло Уаттса, двигатель Ванкеля, грейферный механизм. Способы построения, основные свойства и использование кривых постоянной ширины.
Подобные документы
Сущность построения аксонометрических проекций. Прямоугольная, косоугольная аксонометрия. Общие сведения о многогранниках. Построение проекций многогранника, развертка. Сведения о кривых поверхностях. Построения проекций кривых поверхностей и развертки.
реферат, добавлен 13.03.2014Полярная система координат на плоскости. Особенности построения кривых, заданных полярными уравнениями. Зависимость между полярными и декартовыми координатами. Построение первого витка спирали Архимеда. Применение логарифмической спирали в технике.
конспект урока, добавлен 17.05.2012Задачи визуализации математических функций, имеющих в некоторых точках разрыв первой производной. Принципы выбора интерполяционных методов построения кривых с изломами в заданных точках. Информационно-алгоритмический способ сплайн-интерполяции кривых.
статья, добавлен 15.12.2021Точная формула провисающей цепочки Галилея. Разгадка секрета цепной линии: график показательной функции. Связь между кривой и формой висящей цепочки: поиск уравнения линии. Подобие цепных линий, определение коэффициента подобия в преобразовании кривой.
реферат, добавлен 09.11.2010Кривые и поверхности 2 порядка. Понятие канонических эллипсов, гиперболы, параболы и расчет их эксцентриситета. Кривые, заданные параметрическими уравнениями. Определение полярной системы координат и положение кривых в полярной системе координат.
методичка, добавлен 12.12.2014Определение и свойства эллипса, гиперболы и параболы. Фокальные радиусы точек. Система декартовых прямоугольных координат. Уравнения директрис эллипса. Канонические уравнения эллипса, гиперболы и параболы. Определение уравнений и кривых второй степени.
реферат, добавлен 07.01.2012Аналитическое и практическое построение эволюты и эвольвенты некоторых кривых. Применение эвольвенты окружности в технике для профилирования зубчатых зацеплений. Кривизна плоской кривой, вычисление кривизны. Связь эволюты и эвольвенты, их свойства.
курсовая работа, добавлен 06.09.2010Поиск кривых Эдвардса, приемлемых для криптографии. Сложность выполнения групповых операций на кривой Эдвардса, заданной в проективных координатах. Параметр, соответствующий стандарту ДСТУ 4145–2002. Изоморфизм канонической эллиптической кривой над полем.
статья, добавлен 19.06.2018Описание процесса построения кривой функции распределения, влияние изменения параметров кривой на форму кривой плотности вероятности. Последствия увеличения среднего квадратического отклонения, сущность и особенности нормального распределения Гаусса.
лабораторная работа, добавлен 08.11.2015Вид общего уравнения кривой второго порядка. Общее понятие про эллипс, его каноническое (простейшее) уравнение. Вещественная и мнимая полуось гиперболы. Каноническое уравнение параболы. Особенности решения нелинейных неравенств с двумя неизвестными.
реферат, добавлен 20.04.2012Свойства криптостойких кривых Эдвардса над простыми полями, приемлемых для криптографических приложений. Условия сушествования изоморфных кривых в канонической форме. Определение зависимости между параметрами кривой в форме Эдвардса и канонической форме.
статья, добавлен 29.09.2018- 62. Тела вращения
Объемные тела, которые возникают при вращении некой плоской фигуры, которая, в свою очередь, ограничена кривой и вращается вокруг оси, лежащей в той же плоскости. Определение объёма и площади поверхности различных тел при помощи теорем Гульдина-Паппа.
контрольная работа, добавлен 11.10.2015 Исследование формы данной поверхности методом сечений и построение сечения. Анализ кривой второго порядка. Нахождение фокусов, директрис, эксцентриситета и асимптот данной кривой второго порядка. Вывод уравнения осей канонической системы их координат.
курсовая работа, добавлен 30.10.2010Понятие плоской кривой, заданной уравнением третьей степени. Понятие эллиптической кривой. Модулярные формы и модулярные эллиптические кривые. Определение модулярной эллиптической кривой и гипотеза Таниямы. Вывод теоремы Ферма из гипотезы Таниямы.
статья, добавлен 15.09.2012Пространственная кривая векторной функции. Расчет длины дуги полукубической параболы. Изучение функций скалярных уравнений. Объем тела по известной площади поперечного сечения. Изучение поверхности тела вращения. Периметры окружности и длина образующей.
лекция, добавлен 17.01.2014Понятие, классификация и описание существующих систем координат. История их открытия. Формулы и правила построения кривых в математике и информатике. Прямые и изогнутые линии в природе, технике, живописи. Построение круга на плоскости и в пространстве.
презентация, добавлен 15.04.2014Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.
реферат, добавлен 22.05.2012Систематическое изучение алгебраических кривых. Основные этапы возникновения и развития теории особых точек плоских кривых с момента ранних упоминаний о них до конца XIX в. Изучение процесса проникновения полученных результатов в учебную литературу.
статья, добавлен 26.04.2019В работе рассматривается способ формообразования кривых с помощью биквадратичного преобразования Г4, где прообразом задается окружность. Для получения кривых различной формы соответственно будет изменяться расположение прообраза-окружности на плоскости.
статья, добавлен 16.02.2019В статье рассмотрены вопросы конструирования алгебраических кривых как составляющих обводов, удовлетворяющих определенным техническим характеристикам. Автором предложен метод конструирования универсальных циркульных кривых с помощью круговой инверсии.
статья, добавлен 04.10.2021Изучение постоянных действительных чисел. Общее уравнение кривой второго порядка. Выделения полного квадрата прямых линий. Гипербола и парабола как геометрические места точек плоскости. Оценка размещения декартовых координат в алгебраическом уравнении.
лекция, добавлен 14.03.2014Исследование перехода от алгебраической к канонической форме записи при помощи инвариантов, параллельного переноса, поворота и алгебраических преобразований. Построение кривой в канонической и общей системах координат. Определение сечения поверхности.
курсовая работа, добавлен 11.11.2010Описание работы следящей системы и составление дифференциальных уравнений и передаточных функций. Определение критического значения. Построение кривой D-разбиения в плоскости двух параметров и кривых Михайлова для значений коэффициента усиления.
курсовая работа, добавлен 10.01.2013Параллельный перенос системы координат. Общее уравнение кривой второго порядка. График квадратного трехчлена. Вычисление линейного преобразования, заданного матрицей. Установление связи между декартовыми и полярными координатами точки, примеры расчета.
лекция, добавлен 10.07.2015Зависимость типа кривой от параметра с помощью инвариантов: нахождение фокусов, директрис, эксцентриситета и асимптот. Исследование формы поверхности методом сечений и построение полученного. Построение поверхности в канонической системе координат.
курсовая работа, добавлен 19.11.2010