Преобразование выражений, содержащих дифференциалы

Теоретические основы преобразование выражений с помощью дифференциалов. Понятие производной, понятие частной производной. Связь между производной и дифференциалом. Таблица производных основных элементарных функций. Правила дифференцирования функций.

Подобные документы

  • Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.

    учебное пособие, добавлен 05.04.2011

  • Решение системы уравнений методом Гаусса. Уравнение медианы, высоты, сторон треугольника. Вычисление внутренних углов треугольника. Исследование функции на непрерывность, поиск точки разрыва и характера разрыва. Поиск производной функции, предел функций.

    контрольная работа, добавлен 18.02.2016

  • Краткая справка возникновения логики как науки, методика и предмет ее исследования. Особые математические функции от логических аргументов. Преобразование выражений, состоящих из булевых функций, применение в вычислительной технике и информатике.

    реферат, добавлен 18.06.2015

  • Изучение порядка построения графиков функций. Вычленение базовой функции и определение порядка линейных преобразований, содержащих модуль аргумента. Отображение графика симметрично относительно оси координат. Главные правила преобразования аргумента.

    лекция, добавлен 17.12.2014

  • Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.

    курс лекций, добавлен 10.06.2015

  • Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.

    лекция, добавлен 23.07.2015

  • Подобие второго рода. Осевая симметрия. Следствия векторных формул. Алгебра преобразований и векторных формул, примеры решения основных задач с их использованием. Исследование векторных выражений. Вывод формул разложения на элементарные преобразования.

    статья, добавлен 04.05.2012

  • Понятие о натуральных, комплексных и иррациональных числах. Правила математического доказательства теорем. Принципы исчисления дифференциала и производной функции. Приведение формулы Ньютона-Лейбница. Расчет криволинейного и поверхностного интегралов.

    конспект урока, добавлен 07.12.2011

  • Геометрическое определение модуля, обозначение расстояния между точками плоскости. Уравнения, содержащие два и более выражений со знаком модуля, наибольшее целое решение неравенства. Построение графиков функций, разбивание числовой прямой на промежутки.

    реферат, добавлен 29.11.2010

  • Характеристика интеграла и производной Римана-Лиувилля дробного порядка, интегрального уравнения Фредгольма, функции Гаусса. Исследование задачи с операторами дробного дифференцирования Сайго в краевом условии на характеристической части границы области.

    статья, добавлен 31.05.2013

  • Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.

    лекция, добавлен 14.03.2014

  • Анализ подхода, основанного на приближении таблично заданной функции с помощью алгебраического интерполяционного многочлена Лагранжа. Построения формулы для вычисления второй производной с использованием аппроксимации. Метод неопределенных коэффициентов.

    презентация, добавлен 30.10.2013

  • Основные понятия алгебры логики. Операции булевой алгебры. Построение таблиц истинности и булевых выражений. Законы и соотношения булевой алгебры. Преобразование и упрощение булевых выражений методами непосредственных преобразований и карт Карно.

    курсовая работа, добавлен 26.06.2014

  • Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.

    контрольная работа, добавлен 15.06.2011

  • Основы линейной и векторной алгебры. Пределы и непрерывность. Дифференциальное исчисление функций с одной и несколькими переменными. Зависимость производной от направления. Аналитическая геометрия и комплексные числа. Тригонометрическая форма записи.

    курс лекций, добавлен 09.10.2013

  • Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.

    лекция, добавлен 08.05.2015

  • Введение в анализ и дифференциальное и интегральное исчисление одного переменного. Локальные экстремумы и эскиз графика. Поведение функции вблизи точки разрыва и вычисление производной. Особенности дифференциального исчисления функций и его приложение.

    контрольная работа, добавлен 08.05.2014

  • Дифференциальное исчисление функций, геометрический и физический смысл ее производной. Логарифмическое дифференцирование; интегральное исчисление; градиент. Нахождение площадей плоских фигур. Геометрические и физические приложения кратных интегралов.

    курс лекций, добавлен 29.06.2016

  • Вычисление пределов и производных логарифмических функций, применение правила дифференцирования суммы. Построение графика функции, нахождение горизонтальных и наклонных асимптот. Вычисление неопределенных интегралов и дифференциального уравнения.

    контрольная работа, добавлен 19.04.2016

  • Определение понятия дифференциального исчисления производной как предела отношения абсолютных приращений переменных. Эластичность взаимно обратных функций. Переход от одного основания логарифмов к другому, умножение на константу числителя и знаменателя.

    лекция, добавлен 30.01.2017

  • Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.

    контрольная работа, добавлен 20.12.2013

  • Использование компьютера на уроках математики. Введение понятия производная ее геометрический смысл, касательная к графику непрерывной функции. Правило Лопиталя, алгоритм применения производной для нахождения интервалов монотонности и экстремумов.

    контрольная работа, добавлен 20.02.2020

  • Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.

    контрольная работа, добавлен 18.03.2012

  • Методы исследования предела и производной функции, построения графиков. Вычисление неопределенных интегралов, методы интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных. Решение дифференциальных уравнений.

    контрольная работа, добавлен 30.03.2015

  • Разделение понятия дифференциала функции на независимые переменные, разложение дифференциалов независимых переменных равными приращениями. Частные производные высших порядков. Расчет непрерывных частных производных всех порядков от сложных функций.

    лекция, добавлен 16.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.