Интерполирование функций

Интерполяционная формула Лагранжа и Ньютона. Разработка математического обеспечения. Аналитическое выражение функции f(x). Функциональная зависимость между величинами y и x, описывающая количественную сторону данного явления. Теория приближения функций.

Подобные документы

  • Рассмотрение природы интеграла. Особенности определения первообразной, дифференциала функции и основы специального способа выбора точек на частных отрезках разбиения при помощи интеграла Ньютона-Лейбница. Вычисление функции в интегральной сумме Римана.

    статья, добавлен 25.10.2016

  • Методы поиска решений нелинейных уравнений, сущность метода Ньютона. Интерполяция функции с помощью полинома Лагранжа. Вычисление интеграла по формуле трапеций с тремя десятичными знаками, расчет интеграла по формуле Симпсона. Оптимизация функции.

    контрольная работа, добавлен 13.10.2014

  • Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.

    курсовая работа, добавлен 26.05.2015

  • Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.

    учебное пособие, добавлен 31.03.2016

  • Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.

    курсовая работа, добавлен 12.01.2021

  • Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.

    статья, добавлен 27.06.2016

  • Оценка основных понятий функциональной зависимости. Дифференциальное исчисление функций одной переменной. Характеристика неопределенных интегралов, исследование функций. Понятие кратного интеграла. Определение особенностей дифференциальных уравнений.

    курс лекций, добавлен 20.08.2017

  • Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.

    контрольная работа, добавлен 19.03.2014

  • Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.

    реферат, добавлен 13.06.2015

  • Рассмотрение теоретических основ алгебры. Теорема о разложении правильной рациональной дроби на сумму простейших дробей. Интегрирование целых рациональных функций. Различные способы нахождения и математического анализа неопределенного интеграла.

    лекция, добавлен 17.01.2014

  • Основные свойства и построение графиков степенной, показательной, логарифмической, тригонометрической и обратной тригонометрической функций. Определение элементарных функций, области их определения и значений. Примеры элементарных функций и их свойства.

    курсовая работа, добавлен 30.04.2014

  • Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.

    практическая работа, добавлен 20.12.2011

  • Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.

    лекция, добавлен 26.01.2014

  • Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.

    курсовая работа, добавлен 18.08.2009

  • Общее понятие о степенных функциях, их свойства и основные черты. Разновидности графиков степенных функций: прямая, парабола, кубическая парабола, гипербола. Особенности функций с четным и нечетным числом. Преобразования графиков степенных функций.

    презентация, добавлен 02.03.2012

  • Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.

    курсовая работа, добавлен 13.03.2014

  • Наилучшие приближения непрерывных периодических функций тригонометрическими полиномами и их исследование. Обобщение теоремы Джексона и обобщение известного неравенства С.Н. Бернштейна для производных от тригонометрического полинома. "Обратные теоремы".

    дипломная работа, добавлен 22.04.2011

  • Понятие функций одной переменной, их классификация и разновидности, отличительные особенности и структура. Принципы преобразования графиков. Предел функции на бесконечности и в точке, анализ основных теорем. Непрерывность функции. Типы точек разлома.

    лекция, добавлен 19.02.2018

  • Понятие и характерные свойства функционально полных систем булевых функций как совокупности таких функций (f1, f2,… fk), что произвольная булева функция f может быть записана в виде формулы через функции этой совокупности. Принцип ее двойственности.

    реферат, добавлен 30.11.2014

  • Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.

    контрольная работа, добавлен 29.01.2013

  • Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.

    презентация, добавлен 17.12.2014

  • Анализ понятия и свойств непрерывных функций. Характеристика непрерывности некоторых элементарных функций. Классификация точек разрыва. Описание непрерывности функции в точке, на интервале и отрезке. Анализ экономического смысла непрерывной функции.

    курсовая работа, добавлен 07.04.2016

  • Определение Бохнера для однозначной почти-периодической функции. Описание диагональной последовательности функций. Невозможность выбора равномерно сходящейся подпоследовательности. Доказательство теоремы о сумме многозначных почти-периодических функций.

    статья, добавлен 26.01.2018

  • Биография и научная деятельность Л. Лагранжа. Разработка учёным метрической системы мер, весов и нового календаря. Опубликование в Париже "Теории аналитических функций". Решение дифференциальных уравнений. Награждение графа орденом Почётного легиона.

    реферат, добавлен 02.10.2019

  • Анализ функций, не имеющих производной: разрывные и непрерывные; понятия функций; непрерывные функции, не имеющие производной ни в одной точке (функции Ван-дер-Вардена); правая и левая производные и функции комплексного переменного (условие Коши-Римана).

    лекция, добавлен 27.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.