Об оценке приближенного представления функции п(x)
Понятие зависимости между простыми числами в работах Лежандра и Гаусса. Методы суммирования упорядоченных множеств. Асимптотический анализ данной функции в трудах русского математика П. Чебышева. Ложности функции бесконечного множества по Литлвуду.
Подобные документы
Основные условия возрастания функции на заданном отрезке. Теорема о достаточном условии убывания функции, ее геометрическая интерпретация. Порядок нахождения интервалов монотонности. Анализ взаимосвязи между значением аргумента и значением функции.
презентация, добавлен 21.09.2013Системы счисления, понятие множества. Операции над множествами. Графическое изображение множеств, диаграммы Эйлера-Венна. Таблицы истинности высказываний. Расчет бинарного отношения между множествами А и В. Частота появления значения случайной величины.
шпаргалка, добавлен 30.08.2017Рассмотрение способов оценки меры иррациональности некоторых значений гипергеометрической функции Гаусса. Построение на основе интегральной конструкции линейной формы. Исследование коэффициентов формы при значениях параметра, стремящихся к бесконечности.
статья, добавлен 27.05.2018- 54. Теория графов
Диаграмма Эйлера-Венна для множества. Системы счисления с креном. Построение Эйлеровой цепи в неориентированном графе. Определение минимального остовного дерева в неориентированном нагруженном графе. Понятие булевой функции и методы ее представления.
контрольная работа, добавлен 13.03.2017 Функции комплексной переменной и их значение. Понятие аналитической функции, дифференцирование первого и других равенств. Анализ функции комплексного аргумента. Основные теоремы о пределе и непрерывности вещественных функций в комплексных случаях.
реферат, добавлен 22.12.2011Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.
реферат, добавлен 22.05.2017Биортогональные разложения различных классов функции и их применение в разделах математики. Возникновение необходимости построения биортогональных систем, коэффициенты которых легко выражаются. Условия, обеспечивающие восстановление непрерывной функции.
статья, добавлен 02.02.2019Классическое понятие функциональной зависимости в математике, ограничения применимости понятия для адекватного моделирования реальности. Интеллектуальная система "Эйдос". Методы формирования редуцированных когнитивных функций и наименьших квадратов.
монография, добавлен 13.05.2017- 59. Булевы функции
Понятие существенной и фиктивной переменной простых булевых функции функций. Суперпозиции и теория множеств. Нормальные формы и полиномы. Определение и характеристика классов Поста. Минимизация нормальных форм всюду определённых булевых функций.
курсовая работа, добавлен 05.12.2012 - 60. Множества чисел
Алгебраические операции с комплексными числами. История развития представления человека о числах, их прикладное значение в рамках научного познания. Основные действия над комплексными числами. Применение сопряженных чисел и примеры их использования.
презентация, добавлен 05.12.2016 - 61. Выпуклые функции
Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.
методичка, добавлен 08.09.2015 Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.
курс лекций, добавлен 15.09.2017Использование простейших квадратурных формул для приближенного вычисления интегралов: формулы трапеций, средних прямоугольников, Симпсона, Чебышева. Алгоритм и программная реализация метода Чебышева для нахождения значения интеграла в среде Tubro Pascal.
курсовая работа, добавлен 02.11.2010Понятие и общая характеристика выпуклой функции, условия ее формирования и требования к неравенству. Теорема достаточного условия выпуклости и перегиба. Точка перегиба как точка экстремума первой производной. Определение производной данной функции.
презентация, добавлен 21.09.2013Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.
курсовая работа, добавлен 19.11.2014Описание алгебраических и тригонометрических многочленов на некотором интервале. Формулирование для них теоремы Чебышева об аппроксимации функций. Рассмотрение произвольной, непрерывной на [a,b] вещественной функции и обобщенной теоремы Валле-Пуссена.
реферат, добавлен 06.05.2014Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.
контрольная работа, добавлен 02.11.2010Решение системы уравнений методом Гаусса. Определение предела и производной функции. Написание уравнения прямой, проходящей через точку параллельно касательной. Определение длины основания треугольника с наибольшей площадью. Построение графика функции.
контрольная работа, добавлен 12.09.2012Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.
презентация, добавлен 09.07.2015Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.
реферат, добавлен 31.01.2014Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.
учебное пособие, добавлен 08.02.2015Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.
презентация, добавлен 29.09.2017- 75. О функции Эйлера
Значение функции Эйлера в теории чисел и математике. Доказывание формулы Мертинга и изучение, на ее основе, точности аппроксимации среднего значения функции Эйлера соответствующим квадратичным полиномом. Понятие плотности значений функции Эйлера.
статья, добавлен 26.05.2017