Уравнение линейной регрессии

Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.

Подобные документы

  • Построение регрессионных моделей по рядам динамики. Использование критериев Фишера и Стьюдента, формулы линейного коэффициента корреляции. Оценка параметров уравнения регрессии, применение метода наименьших квадратов. Примеры гетероскедастичности.

    контрольная работа, добавлен 25.04.2015

  • Обзор процесса построения адаптивной мультипликативной модели Хольта–Уинтерса. Оценка точности построенной модели с использованием средней относительной ошибки аппроксимации. Рассчет экспонциальной скользящей средней; момента; скорости изменения цен.

    контрольная работа, добавлен 18.03.2014

  • Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.

    реферат, добавлен 08.02.2018

  • Построение диаграммы рассеивания с нанесенной на нее сеткой для группировки данных. Проверка заданной гипотезы об отсутствии линейной статистической связи между компонентами. Получение интервальной оценки для истинного значения коэффициента корреляции.

    курсовая работа, добавлен 05.11.2011

  • Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.

    статья, добавлен 24.02.2019

  • Коммерческий банк: понятие, сущность, функции. Теоретические аспекты построения статистической модели. Проявление мультиколлинеарности. Проверка уравнения регрессии на значимость. Построение модели зависимости прибыли банков от значимых факторов.

    курсовая работа, добавлен 26.05.2013

  • Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.

    курсовая работа, добавлен 12.12.2014

  • Определение критериев оптимальности планирования. Построение матрицы планирования с ортогональными вектор-столбцами. Оценка коэффициентов уравнения регрессии. Проверка адекватности описания объекта полиномом второго порядка с помощью F-критерия Фишера.

    контрольная работа, добавлен 25.01.2024

  • Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.

    презентация, добавлен 18.12.2012

  • Ознакомление с условиями поиска полиномиальной регрессионной математической модели. Вычисления для линейной РОФМ. Формульное определение критериев выделяющегося максимального значения. Промежуточные показатели при расчетах коэффициентов регрессии.

    методичка, добавлен 08.06.2015

  • Определение вероятности случайного события. Закон распределения случайной величины и расчет числовых характеристик (математического ожидания и дисперсии). Точечные оценки математического ожидания. Оценка коэффициента корреляции, расчет линейной регрессии.

    контрольная работа, добавлен 26.10.2014

  • Исследование функции среднеквадратической ошибки прогноза для ридж-регрессии на экстремум в зависимости от параметра регуляризации. Использование локального минимума СКОП для поиска оптимального параметра управления при мультиколлинеарности факторов.

    статья, добавлен 29.08.2016

  • Определение математического ожидания, дисперсии, функции распределения, вероятности событий, ошибок измерений. Построение эмпирической функции распределения. Статистическая проверка гипотезы о нормальном распределении. Оценка коэффициента корреляции.

    контрольная работа, добавлен 13.05.2014

  • Вероятность качественного изготовления изделий. Распределение дискретной случайной величины. Математическое ожидание и среднее квадратичное отклонение. Рассмотрение закона распределения вероятности. Уравнение линейной среднеквадратической регрессии.

    контрольная работа, добавлен 31.10.2015

  • Изучение сущности математического моделирования. Отличительные черты пассивного и активного эксперимента. Нахождение математической модели процесса напыления резисторов методом полного факторного эксперимента. Оценки коэффициентов уравнения регрессии.

    контрольная работа, добавлен 30.11.2011

  • Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.

    курсовая работа, добавлен 19.06.2015

  • Определение среднего значения исследуемого параметра для каждой точки факторного пространства. Проверка гипотезы однородности дисперсий по критерию Корхена. Значения коэффициентов уравнения регрессии. Проверка адекватности математической модели.

    курсовая работа, добавлен 03.11.2020

  • Расчет числовых характеристик выборочного распределения. Построение вариационного ряда и расчёты с использование электронных таблиц. Задача практического применения дисперсного анализа, парной линейной и нелинейной, а так же множественной регрессии.

    контрольная работа, добавлен 11.04.2016

  • Результат множественной регрессионного анализа тарифов на размещение рекламы в журналах. Коэффициенты регрессии и уравнение. Прогнозируемые значения функций и переменных. Данные в уравнение прогнозирования исходной совокупности данных в множествах.

    реферат, добавлен 29.09.2013

  • Описание свойств объясняющих переменных в линейной эконометрической модели. Статистическая информация о реализациях переменной. Вектор и матрица коэффициентов корреляции. Исключение квазинеизменных переменных. Метод показателей информационной ёмкости.

    презентация, добавлен 19.01.2015

  • Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.

    презентация, добавлен 20.01.2015

  • Методы получения адекватных моделей для решения управленческих задач. Свойства почв и метеоусловий северной и центральной зон Краснодарского края. Оценка урожайности по методу наименьших квадратов. Моделирование с помощью кусочно-линейной регрессии.

    статья, добавлен 26.04.2017

  • Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.

    контрольная работа, добавлен 19.11.2013

  • Вычисление коэффициентов регрессии и выявление тенденции развития процессов. Обработка табличных данных. Отчет кредитной организации о прибыли, убытка. Корреляционный анализ. Парная и множественная регрессии. Решение математических задач средствами Excel.

    контрольная работа, добавлен 05.06.2022

  • Рассмотрение метода взвешенных наименьших квадратов. Исследование случая парной регрессии. Нарушение гомоскедастичности и наличие автокорреляции остатков. Уравнение регрессии без свободного члена. Дисперсия результативного признака и остаточных величин.

    презентация, добавлен 13.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.