Комплексные числа
Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.
Подобные документы
Краткий обзор развития тригонометрии, ее возникновение как одного из разделов астрономии. Теоремы сложения: тригонометрические функции суммы и разности аргументов, двойного и половинного аргумента, тангенсов, формулы площади треугольника, другие формулы.
контрольная работа, добавлен 22.05.2009Геометрическая интерпретация комплексных чисел и действий над ними. Формулы длины отрезка и скалярного произведения векторов. Параллельность, коллинеарность, перпендикулярность. Двойное отношение четырёх точек плоскости. Полюсы относительно окружности.
учебное пособие, добавлен 28.12.2013Лист Мёбиуса как топологический объект, простейшая односторонняя поверхность с краем, прародитель символа бесконечности. Его свойства, геометрическое и параметрическое описание. Лист Мёбиуса в скульптурах, графическом искусстве, технических изобретениях.
реферат, добавлен 25.11.2014- 104. Дійсні числа
Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.
курсовая работа, добавлен 15.06.2016 Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.
лекция, добавлен 22.07.2015- 106. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 История введения в школьный курс математики темы "Иррациональные числа", краткая характеристика материала учебников данного периода. Исследование начальной информации про иррациональные числа и действия с ними. Извлечение числа из кубического корня.
статья, добавлен 11.10.2024- 108. Комплексні числа
Найпростіші застосування комплексних чисел. Спосіб Гамільтона введення комплексних чисел. Застосування комплексних чисел в геометрії. Формули Ейлера і Муавра та їх застосування. Комплексні числа в геометричних побудовах. Комплексні числа і центр мас.
реферат, добавлен 10.01.2009 Сравнение числа Пи с другими математическими величинами и их визуализация. Изучение методов использования компьютерных систем для интерпретации математических величин. Анализ возможности использования среды КСС "Demomod" при визуализации моделей числа.
статья, добавлен 22.01.2017Деление чисел с использованием теоремы о делении с остатком. Представление геометрической интерпретации комплексных чисел, определение их модулей. Применение диафантова анализа. Вычисление матриц и пределов. Нахождение производных заданных функций.
контрольная работа, добавлен 21.01.2015- 111. Комплексні числа
Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.
реферат, добавлен 07.10.2010 Шар - геометрическое тело, состоящее из всех точек пространства, находящихся на расстоянии, не большем данного. Касательная - плоскость, проходящая через точку шаровой поверхности перпендикулярная радиусу. Окружность - линия пересечения двух сфер.
контрольная работа, добавлен 30.05.2015Деление отрезка прямой в заданном отношении по средствам построения. Геометрическое определение "золотого сечения". Вывод формул для нахождения координат точки, делящей отрезок в данном отношении. Применение теорем Менелая и Чевы для решения задач.
курсовая работа, добавлен 18.05.2016История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.
статья, добавлен 03.09.2011Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.
курсовая работа, добавлен 18.05.2016Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.
курсовая работа, добавлен 22.04.2011Выработка умения применять формулы квадрата двучлена для преобразования квадрата суммы или разности в трехчлен. Ознакомление с основными методами закрепления и усовершенствования навыков решения уравнений и тождественных преобразований целых выражений.
разработка урока, добавлен 30.07.2015Последовательность и отличия арифметических действий с числами в различных системах счисления: двоичной, десятичной и шестнадцатеричной. Примеры сложения, вычитания, умножения и деления на основе переходов между разрядными слагаемыми многозначных чисел.
реферат, добавлен 01.02.2014Сущность построения математической модели экономического процесса. Геометрическое истолкование дифференциального уравнения. Задача Коши. Общие свойства решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.
курсовая работа, добавлен 17.01.2011В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.
статья, добавлен 26.01.2020Основные инвариантные свойства параллельного проектирования: проекция точки есть точка; проекция прямой на плоскость есть прямая; проекции взаимно параллельных прямых также взаимно параллельны. Изображение на плоскости треугольника, квадрата, ромба.
презентация, добавлен 09.01.2014- 122. Натуральные числа
Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.
доклад, добавлен 11.01.2012 Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014- 124. Число е
Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 15.05.2011 Ф. Беллар как один из ученых вычисливший число Пи с рекордной точностью. Личная жизнь Беллара и формула вычисления числа. Числа, которыми можно назвать и вычислить Пи: подходящие (приближенные) и десятичные дроби, заглавные латинские буквы и целые числа.
презентация, добавлен 27.04.2015