Канонический вид произвольных линейных преобразований
Изучение нормальной формы линейного преобразования, его собственные и присоединенные векторы. Выделение подпространства, в котором преобразование А имеет только одно собственное значение и приведение его к нормальной форме, инвариантные множители.
Подобные документы
Нахождение обратной матрицы. Решение квадратных систем линейных алгебраических уравнений матричным методом и по правилу Крамера. Метод Жордановых исключений. Собственные векторы и собственные значения. Приведение квадратичной формы к каноническому виду.
курс лекций, добавлен 11.04.2013Особенности дизъюнктивной нормальной формы (ДНФ) в булевой логике — нормальной формы, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Использование в формуле закона двойного отрицания, закона де Моргана, закона дистрибутивности.
реферат, добавлен 16.02.2020Использование метода присоединенных G-структур в сочетании с методом инвариантного исчисления Кошуля. Формулы преобразования структурного и виртуального тензоров эрмитовой структуры относительно голоморфно 2-геодезических преобразований линейных типов.
автореферат, добавлен 17.12.2017Действия с линейными операторами. Произведение оператора на число. Результат последовательного применения на вектор-прообраз х в пространстве Х. Изучение характеристического многочлена матрицы. Собственные векторы и числа, системы линейных уравнений.
лекция, добавлен 26.11.2013Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.
методичка, добавлен 29.12.2015Понятие линейных систем, классический метод их описания. Векторная функция, матрица нормальной системы дифференциальных уравнений. Физический смысл частного и вспомогательного решений. Метод вариации произвольных постоянных неоднородной системы.
реферат, добавлен 27.12.2013- 7. Теория игр
Игра в нормальной форме. Ситуации сильного равновесия. Дуэли с одним выстрелом. Вектор Шепли произвольных игр и для игр власти. Арбитражная схема Нэша. Ситуация равновесия в позиционной игре с полной информацией, в непрерывных антагонистических играх.
контрольная работа, добавлен 19.02.2014 Игра в нормальной форме. Исход сильного равновесия без создания коалиции игроков. Дуэли с одним выстрелом. Вектор Шепли произвольных игр. Арбитражная схема аксиомы Нэша. Существование ситуации равновесия в конечной позиционной игре с полной информацией.
контрольная работа, добавлен 19.02.2014Понятие таблиц чисел, так называемых матриц, с помощью которых удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Определение линейного преобразования.
контрольная работа, добавлен 14.04.2011- 10. Линейная алгебра
Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.
учебное пособие, добавлен 17.04.2013 Суть строчной, столбцовой, диагональной, единичной и транспонированной матрицы. Особенность определителей и их свойств. Собственные значения и векторы многомерной таблицы. Анализ квадратичной формы переменных. Исследование систем линейных уравнений.
лекция, добавлен 05.06.2016Проведение исследования основных операций булевой алгебры. Получение практических навыков по преобразованию и упрощению булевых выражений методами непосредственных преобразований и карт Карно. Построение выражений в форме канонической суммы минтермов.
контрольная работа, добавлен 28.01.2020Изучение понятия, видов и особенностей применения вейвлетных функций. Свойства вейвлет-преобразования - линейность, инвариантность относительно сдвига и масштабирования, дифференцирование. Сущность дискретных и непрерывных ортогональных преобразований.
реферат, добавлен 11.05.2013Методы решения линейных систем уравнений. Приведение системы к треугольному виду последовательным обнулением поддиагональных элементов первого и второго столбца как цель прямого хода преобразований в методе вращений. Особенности хода преобразований.
контрольная работа, добавлен 18.11.2013Дифференциальное уравнение системы. Вычисление переходной и импульсной переходной характеристики. Построение частотных характеристик в пакете MatLab. Уравнения состояния системы в нормальной и в канонической форме. Проверка коэффициента усиления.
контрольная работа, добавлен 18.06.2015Эквивалентность матриц, понятие унимодулярных матриц. Связь подобия числовых матриц с эквивалентность их характеристических матриц. Приведение матрицы к жордановой нормальной форме и особенности минимального многочлена. Решение типовых матричных задач.
дипломная работа, добавлен 20.03.2016Изучение порядка построения графиков функций. Вычленение базовой функции и определение порядка линейных преобразований, содержащих модуль аргумента. Отображение графика симметрично относительно оси координат. Главные правила преобразования аргумента.
лекция, добавлен 17.12.2014Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
контрольная работа, добавлен 09.07.2015Представление функции алгебры логики в совершенной дизъюнктивной нормальной форме. Преобразования и минимизация в базисе, который состоит из функции Вебба. Порядок построения таблицы меток из исходных и первичных импликантов в виде двоичных кодов.
контрольная работа, добавлен 19.12.2018Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.
учебное пособие, добавлен 02.05.2014Алгебра логики как математическая основа преобразования логических функций. Основные свойства конъюнкции, дизъюнкции и отрицания. Методы составления таблицы истинности для импликации и сложения по модулю 2 совершенной дизъюнктивной нормальной формы.
курсовая работа, добавлен 29.04.2014Сущность и значение кодирования программ. Характеристика и отличительные черты теоремы о параметризации, описание и специфика универсальных функций. Применение теоремы Клини о нормальной форме. Синтаксис и семантика, теорема Райса и математическая логика.
контрольная работа, добавлен 30.12.2015Проблема вычисления интеграла линейной интегральной оценки. Уравнение, описывающее свободное движение ошибки регулирования системы. Определение значение параметра, при котором интегральная оценка имеет минимум. Примерный вид кривых изменения ошибки.
лекция, добавлен 22.07.2015На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.
статья, добавлен 11.07.2018