Решение уравнений

Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.

Подобные документы

  • Расчет угла между ребрами пирамиды средствами векторной алгебры. Составление уравнения плоскости, проходящей через прямую. Решение методом Гаусса системы DX=K. Расчет размерности и базиса линейной оболочки векторов. Расчет кривых в системе координат XOY.

    контрольная работа, добавлен 08.03.2011

  • Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.

    презентация, добавлен 06.12.2011

  • Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.

    учебное пособие, добавлен 13.01.2014

  • Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.

    курсовая работа, добавлен 08.07.2012

  • Извлечение квадратного корня из отрицательного числа как основное содержание формулы Кардано. Анализ условия равенства суммы обоих кубических радикалов их удвоенной действительной части. Методика приведения исходного уравнения к каноническому виду.

    статья, добавлен 24.01.2016

  • Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.

    контрольная работа, добавлен 07.11.2018

  • Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.

    курсовая работа, добавлен 27.03.2011

  • Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.

    контрольная работа, добавлен 03.02.2017

  • Нахождение вершин и углов параллелограмма. Составление уравнения перпендикуляра в треугольнике. Определение угла между плоскостью и прямой, проходящей через начало координат и заданную точку. Уравнение перпендикуляра, опущенного из точки на прямую.

    контрольная работа, добавлен 08.10.2013

  • Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.

    дипломная работа, добавлен 14.07.2016

  • Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.

    контрольная работа, добавлен 01.03.2017

  • Молекулярная теория строения вещества. Процессы, происходящие в средах с неупорядоченными структурами. Дифференциальное уравнение диффузии. Нахождение решения уравнения диффузии в общем случае. Телеграфный процесс и нахождение решения уравнения.

    курсовая работа, добавлен 11.07.2016

  • Определение сущности и свойств обратной матрицы. Применение метода Гаусса-Жордана для нахождения обратной матрицы. Проблема выбора начального приближения в процессах итерационного обращения матриц. Решение системы линейных алгебраических уравнений.

    реферат, добавлен 26.01.2016

  • Вычисление определителя матрицы разложением. Решение системы уравнений методом Гаусса. Нахождение площади грани и длины высоты пирамиды. Свойства скалярного произведения. Каноническое уравнение высоты пирамиды. Уравнение медианы, опущенной из вершины.

    контрольная работа, добавлен 01.06.2017

  • Канонические и параметрические уравнения кривых второго порядка, таких как эллипс, гипербола и парабола, их основные свойства. Приведение уравнения кривой второго порядка к каноническому виду. Уравнения кривых второго порядка в полярных координатах.

    методичка, добавлен 06.02.2013

  • Раскрытие неопределенности с помощью правила Лопиталя. Поиск производной от функции. Решение системы линейных уравнений методами Гаусса и Крамера. Расширенная матрица системы, уравнение прямой. Решение игры аналитическим и геометрическим способами.

    контрольная работа, добавлен 03.07.2012

  • Анализ составления матрицы В, состоящей из свободных членов. Приведение к алгебраическому преобразованию, чтобы главная диагональ была равна единице с помощью метода Гаусса. Особенность создания матрицы M, состоящей из коэффициентов при неизвестных.

    отчет по практике, добавлен 03.05.2020

  • Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.

    задача, добавлен 20.01.2014

  • Нахождение точного решения задачи о минимуме заданного функционала. Решение уравнения Эйлера. Нахождение приближенных решений (итераций) задачи о минимуме по методу Ритца при определенном выборе системы координатных функций. Построение графиков функций.

    курсовая работа, добавлен 22.12.2015

  • Нахождение угла между прямой и плоскостью в пространстве. Составление уравнения перпендикуляра опущенного из точки. Определение формул эллиптического, гиперболического и параболического цилиндров. Написание уравнений геометрических свойств поверхности.

    лекция, добавлен 26.01.2014

  • Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.

    методичка, добавлен 09.04.2012

  • Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.

    контрольная работа, добавлен 29.09.2013

  • Составление уравнений связи, измеренных длин функционально связанных с параметрами обратной геодезической задачи. Определение веса измеренных величин и значений сторон, вычисленных по приближенным координатам. Составление каталога уравненных координат.

    курсовая работа, добавлен 04.12.2020

  • Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.

    контрольная работа, добавлен 04.09.2013

  • Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.

    курсовая работа, добавлен 23.10.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.