Исследование операций и системный анализ

Описание процесса составления системы дифференциальных уравнений Колмогорова, алгебраических уравнений для финальных вероятностей состояний. Понятие и сущность авиационной технической базы, определение необходимого времени для обслуживания самолетов.

Подобные документы

  • Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.

    статья, добавлен 26.06.2016

  • Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.

    статья, добавлен 27.04.2019

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Решение системы дифференциальных уравнений, описывающей процесс получения жидкого железа прямого восстановления в электродуговой сталеплавильной печи. Энергетические и химические процессы в расплаве и шлаке. Строение пространства моделирования системы.

    статья, добавлен 02.11.2018

  • Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.

    курсовая работа, добавлен 26.02.2020

  • Ознакомление с особенностями определения, свойства и методологии нахождения степенного преобразования для заданной системы алгебраических и дифференциальных уравнений. Рассмотрение и анализ процесса степенного преобразования унимодулярной матрицы.

    статья, добавлен 26.10.2014

  • Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.

    контрольная работа, добавлен 22.08.2014

  • Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.

    статья, добавлен 03.11.2015

  • Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.

    контрольная работа, добавлен 24.12.2014

  • Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.

    дипломная работа, добавлен 21.09.2016

  • История и важные этапы развития теории дифференциальных уравнений. Дифференциальное исчисление, созданное Лейбницем и Ньютоном. Доказательство неразрешимости алгебраических уравнений в радикалах. Простейшие дифференциальные уравнения первого порядка.

    доклад, добавлен 19.02.2016

  • Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.

    статья, добавлен 27.11.2018

  • Решение систем линейных алгебраических уравнений методом Гаусса. Схема единственного деления. Необходимость выбора главного элемента по столбцу. Исключение неизвестного из уравнений на этапе обратного хода. Коэффициенты системы уравнений по Гауссу.

    доклад, добавлен 18.09.2013

  • История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.

    учебное пособие, добавлен 30.09.2014

  • Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.

    контрольная работа, добавлен 20.12.2016

  • Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.

    статья, добавлен 07.08.2020

  • Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.

    задача, добавлен 20.01.2014

  • Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.

    курсовая работа, добавлен 26.02.2014

  • Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.

    реферат, добавлен 18.05.2016

  • Теория и учет погрешности приближенных вычислений. Абсолютная и относительная погрешности. Численные методы решения алгебраических, дифференциальных, трансцендентных уравнений. Система линейных и графических уравнений. Метод конечных разностей и итераций.

    учебное пособие, добавлен 04.02.2015

  • Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.

    лабораторная работа, добавлен 08.06.2015

  • Решение математической задачи методом Гаусса, с выбором главного элемента. Расчеты линейных алгебраических уравнений по Гауссу-Жордано, Зейделю с заданной точностью и простыми итерациями. Вычисление определителя системы. Нахождение обратной матрицы.

    задача, добавлен 22.06.2015

  • Системы дифференциальных уравнений. Непрерывно дифференцируемые или абсолютно непрерывные функции. Математическое описание управляемой системы с обратной связью. Теоремы существования решений для дифференциальных включений в конечномерном пространстве.

    контрольная работа, добавлен 03.02.2011

  • Краткие биографические данные о жизни Фридриха Гаусса – немецкого математика, астронома и физика. Первые исследования метода решения систем линейных алгебраических уравнений. Понятие расширенной матрицей системы. Элементарные преобразования системы.

    курсовая работа, добавлен 05.12.2013

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.