Приближенная минимизация интегрального функционала по методу Ритца
Нахождение точного решения задачи о минимуме заданного функционала. Решение уравнения Эйлера. Нахождение приближенных решений (итераций) задачи о минимуме по методу Ритца при определенном выборе системы координатных функций. Построение графиков функций.
Подобные документы
Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.
контрольная работа, добавлен 23.04.2022Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.
курсовая работа, добавлен 08.07.2012Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.
контрольная работа, добавлен 07.03.2016Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.
презентация, добавлен 18.09.2013Решение системы линейных уравнений методом Гаусса, нахождение предела и производной функции. Составление уравнения касательных, схематичное построение графиков. Вычисление расширенной матрицы, определение промежутков знаков постоянства и экстремумов.
контрольная работа, добавлен 21.10.2014Изучение поведения функций и построение их графиков как важный раздел математики. Вклад в развитие графиков функций математиков древнего мира. Основные способы задания функций, методы построениях их графиков. Построение графика обратной функции.
реферат, добавлен 04.12.2014Вычисление пределов и производных логарифмических функций, применение правила дифференцирования суммы. Построение графика функции, нахождение горизонтальных и наклонных асимптот. Вычисление неопределенных интегралов и дифференциального уравнения.
контрольная работа, добавлен 19.04.2016Уравнения Навье-Стокса как система дифференциальных уравнений в частных производных, описывающих движение вязкой ньютоновской жидкости, знакомство с основными особенностями. Общая характеристика способов решения прикладных задач газовой динамики.
контрольная работа, добавлен 25.07.2013Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.
практическая работа, добавлен 20.12.2011Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.
контрольная работа, добавлен 20.12.2016Определение симметричных и кососимметричных билинейных функций. Закон изменения матрицы билинейной формы. Определение квадратичного функционала, его матричный вид. Основные методы приведения к канонической форме. Нормальный вид квадратичного функционала.
курсовая работа, добавлен 24.09.2013Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.
контрольная работа, добавлен 18.03.2012Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Исследование нелокальной краевой задачи для смешанного параболо-гиперболического уравнения второго порядка с негладкими условиями сопряжения. Доказательство существования решения данной задачи. Решение интегрального уравнения Фредгольма второго рода.
статья, добавлен 15.05.2017Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
лекция, добавлен 05.03.2009Решение обратной задачи гравиметрии как актуальна задача в современных условиях. Особенности интегрального уравнения Фредгольма первого рода, которое является некорректной задачей. Основные математические аспекты решения двумерной задачи гравиметрии.
статья, добавлен 30.01.2017Решения задачи коммивояжера. Сущность метода прямого перебора. Построение дерева ветвлений и нахождение длины путей. Решение дискретной задачи транспортного типа. Сущность метода "ветвей и границ". Приведение задачи максимизации к задаче минимизации.
контрольная работа, добавлен 19.04.2013Построение математической модели процесса всплытия подводной лодки, анализ физической сути процесса. Определение параметров и сил, действующих на лодку. Нахождение частных случаев решения задачи методом дифференциальных уравнений, построение графиков.
курсовая работа, добавлен 27.04.2017Задачи об оптимизации объекта управления в динамике. Общая задача Лагранжа, ее значение. Условие стационарности функционала, выраженное уравнениями Эйлера-Лагранжа. Расчет оптимального управления классическим методом вариационного исчисления уравнения.
контрольная работа, добавлен 22.07.2015Определение корней уравнения, уточнение их с применением графических методов хорд и касательных Ньютона и простых итераций. Составление таблиц приближенных значений интеграла дифференциального уравнения с использованием методов Эйлера-Коши и Рунге-Кутта.
контрольная работа, добавлен 21.09.2016Решение уравнения и построение его на комплексной плоскости. Определение точек разрыва функции и указание характера точек разрыва. Нахождение производных функций. Расчет экстремумов функции с использованием второй производной. Разложение функции в ряд.
контрольная работа, добавлен 22.04.2018Выбор аппроксимирующих функций в зависимости от условия задачи. Построение графиков функций: исходной, полученных аппроксимирующих и зависимостей погрешностей. Проведение контрольных расчетов с помощью системы Mathcad для всех методов аппроксимации.
курсовая работа, добавлен 23.12.2014