Определение матрицы. Виды матриц
Основные операции над матрицами и их свойства. Определитель квадратной матрицы. Транспонирование – перемена ролями строк и столбцов матрицы. Подчинение следующим законам: коммутативному и ассоциативному. Понятие определителей и их определение символами.
Подобные документы
Понятие, основные виды (скалярная, единичная, нулевая, транспонированная) и равенство матриц как множества чисел, образующих прямоугольную таблицу, определение вектора. Характеристика операций над матрицами в линейной алгебре. Свойства умножения матриц.
лекция, добавлен 18.03.2016Определение абсолютной величины смешанного произведения векторов. Рассмотрение и характеристика условия параллельности и перпендикулярности прямых. Ознакомление с операциями сложения матриц. Исследование и анализ процесса умножения матрицы на число.
лабораторная работа, добавлен 29.11.2015- 53. Матричный анализ
Понятие функции от матрицы: определение, значение, основные свойства. Построение интерполяционного многочлена Лагранжа-Сильвестра. Спектральная теорема для простых матриц и ее следствие. Характеристика эрмитовых, квадратичных и неотрицательных матриц.
контрольная работа, добавлен 31.10.2010 Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.
курсовая работа, добавлен 28.06.2012Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.
презентация, добавлен 11.12.2013Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012Виды матриц, используемых в математике для компактной записи систем алгебраических или дифференциальных уравнений. История происхождения и свойства магического квадрата. Применение массивов в технике и программировании. Прогрессивные матрицы Равена.
реферат, добавлен 21.03.2022Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.
контрольная работа, добавлен 19.01.2014Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.
контрольная работа, добавлен 04.09.2013- 61. Линейная алгебра
Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.
лекция, добавлен 28.07.2015 Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.
задача, добавлен 31.07.2011Сведения об умножении матриц, характеристика его свойств. Умножение матриц произвольного формата, их разбиение. Ассоциативность умножения матриц произвольного формата. Матрицы как линейные операторы. Построение матрицы по заданной формуле отображения.
курсовая работа, добавлен 02.03.2019Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.
методичка, добавлен 14.12.2010Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.
шпаргалка, добавлен 18.03.2013Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.
лекция, добавлен 24.11.2015Определение понятий матрицы и ранга матрицы, а также описание алгоритма Гаусса. Анализ сути метода окаймляющих миноров. Характеристика алгоритма и пример вычисления ранга матрицы методом окаймляющих миноров. Анализ вычислительной сложности алгоритма.
курсовая работа, добавлен 17.03.2017Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.
лекция, добавлен 29.09.2013Особенность проведения линейных операций над матрицами. Линейно-зависимые и линейно-независимые ряды моделей. Характеристика вычисления вектор-столбцов. Исследование алгебраических дополнений и миноров. Основные свойства определителя n-го порядка.
лекция, добавлен 17.05.2017- 70. Обратная матрица
Определение сущности и свойств обратной матрицы. Применение метода Гаусса-Жордана для нахождения обратной матрицы. Проблема выбора начального приближения в процессах итерационного обращения матриц. Решение системы линейных алгебраических уравнений.
реферат, добавлен 26.01.2016 - 71. Обратная матрица
Теорема о существовании и единственности обратной матрицы. Операция обращения матрицы, ее свойства. Вычисление обратной матрицы с помощью алгебраических дополнений или методом Гаусса (используя преобразования Жордана). Решение матричных уравнений.
лекция, добавлен 11.12.2014 Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.
задача, добавлен 05.09.2016Понятие, свойства и характеристика основных видов матриц, а именно матрица размера mхn, квадратная, единичная, симметрическая и диагональная. Описание операций по составлению суммы и разности матриц, оценка их результатов. Сущность преобразования подобия.
контрольная работа, добавлен 16.06.2010Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.
курсовая работа, добавлен 07.06.2014Определитель как одно из основных понятий линейной алгебры. Нахождение обратной матрицы. Коэффициенты при переменных и свободные членов. Методы Крамера и Гаусса. Отрезки, отсекаемые плоскостью на осях координат. Исследование функции и построение графика.
контрольная работа, добавлен 08.10.2014