Соленоидальное векторное поле
Скалярные и векторные поля. Циркуляция векторного поля вдоль кривой. Формула Гаусса-Остроградского, дивергенция. Формула Стокса, ротор векторного поля. Потенциальное поле и его свойства. Соленоидальное поле и его свойства. Расчет векторного потенциала.
Подобные документы
Характеристика свойства полей: потенциальное, соленоидальное и гармоническое (уравнение Лапласа) векторное поле; векторный потенциал поля; центральные скалярные и векторные поля. Задачи Дирихле, Неймана. Построение векторных полей по дивергенции и ротору.
реферат, добавлен 20.03.2014Элементы математической теории скалярных и векторных полей. Характеристики скалярного поля. Потенциальное векторное поле, его свойства. Потенциальное несжимаемое поле и поле Лапласа (гармоническое). Теорема о разложимости произвольного векторного поля.
реферат, добавлен 21.10.2014Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.
реферат, добавлен 23.01.2022Изложение интегральных характеристик полей: дивергенция и ротор, их физический смысл; криволинейные и поверхностные интегралы, их вычисление; поток и дивергенция векторного поля; циркуляция и ротор векторного поля; теоремы Гаусса-Остроградского и Стокса.
курсовая работа, добавлен 20.03.2014Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла.
реферат, добавлен 21.06.2016Рассмотрение физических примеров скалярных полей. Нахождение и изображение линии и поверхности уровня скалярных полей. Изучение понятия вектор-градиент скалярного поля. Рассмотрение физического смысла потока векторного поля. Циркуляция векторного поля.
презентация, добавлен 27.06.2015Геометрические характеристики векторного поля. Дифференциальные операции 1 и 2 порядка, оператор Гамильтона. Виды векторных полей. Интеграл от векторной функции вдоль кривой. Работа и свойства потенциального поля. Примеры восстановления потенциала.
презентация, добавлен 19.11.2017- 8. Теория поля
Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.
лекция, добавлен 29.09.2014 Вычисление потока векторного поля через полную поверхность пирамиды в направлении нормали. Вычисление циркуляции векторного поля по замкнутому контуру путем применения теоремы Стокса к контуру и ограниченной им поверхности. Теорема Остроградского.
реферат, добавлен 22.12.2010Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.
презентация, добавлен 17.09.2013Связь между поверхностными интегралами первого и второго рода, свойства поверхностного интеграла второго рода и формулы Остроградского-Гаусса и Стокса. Поток векторного поля. Физическое приложение поверхностного интеграла как потока векторного поля.
контрольная работа, добавлен 23.04.2011Скалярное поле, производная по направлению, градиент функции. Оператор Гамильтона. Свойства векторного поля. Комплексные числа, формулы Эйлера. Производные и интеграл от функции комплексного переменного. Ряды Тейлора и Лорана. Вычеты и их использование.
учебное пособие, добавлен 24.06.2014Рассмотрение обобщения векторного метода вычисления индекса Пуанкаре на многомерный случай (при некоторых ограничениях), пример, иллюстрирующий данный метод. Искомый индекс плоского векторного поля. Наиболее весомая ненулевая линейная компонента.
статья, добавлен 26.04.2019Простейшие геометрические характеристики векторных полей: векторные линии, поток, дивергенция, циркуляция и вихрь. Частный случай электромагнитного поля. Гравитационное и тензорное поля. Примеры скалярных полей на трёхмерном и плоском пространстве.
эссе, добавлен 26.01.2017- 15. Скалярное поле
Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.
лекция, добавлен 08.05.2015 Построение полной системы инвариантов в задаче об аналитической классификации вырожденных элементарных особых точек на комплексной плоскости. Доказательство теоремы об основной секторальной нормализации седло-узловых особых точек векторного поля.
автореферат, добавлен 21.02.2013Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.
контрольная работа, добавлен 20.12.2011Фазовые пространства. Векторные поля на прямой. Методы решения линейных уравнений. Действие диффеоморфизмов на векторные поля и на поля направлений. Теоремы о выпрямлении. Консервативная система с одной степенью свободы. Свойства, определитель экспоненты.
учебное пособие, добавлен 24.09.2012Исследование методов вычисления индекса нулевой изолированной особой точки плоского векторного поля. Описание подхода, помогающего свести полиномиальные векторные поля к векторным полям с известным индексом нуля через гомотопические преобразования.
статья, добавлен 26.04.2019Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.
лекция, добавлен 17.01.2014Геометрическая интерпретация векторного произведения в зеркальном отражении. Главная особенность доказательств коммутативности сложения векторов на плоскости. Основные свойства скалярного отображения. Характеристика аксиомы параллельности Евклида.
контрольная работа, добавлен 28.04.2016Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
презентация, добавлен 01.09.2015Построение структуры силовых линий электромагнитного поля системы из двух элементарных электрических вибраторов, расположенных на заданном расстоянии друг от друга и на одной линии. Расчет выражения для векторного потенциала сторонних магнитных токов.
контрольная работа, добавлен 31.05.2014Узагальнення перетворення Дуба на випадок гауссівських полів теореми Парка і Параньяпа. Дослідження ймовірностей, пов'язаних зі звуженням поля Ченцова на поверхні. Оцінки "хвоста" розподілу максимуму поля Ченцова на ламаній з однією точкою злому.
автореферат, добавлен 27.07.2015Доказательство того, что нулевая особая точка конечномерного векторного поля с вырожденной производной Фреше ранга r=n-1 является изолированной, если на лучах вырождения линейной части поля векторы квадратичной части не лежат в гиперплоскости.
статья, добавлен 26.04.2019