Геометричне моделювання узагальнених паралельних множин
Теорії геометричного моделювання узагальнених паралельних множин для розв’язання задач формоутворення геометричних об’єктів. Їх опис за допомогою нормальної і нормалізованої функцій та шляхом розв’язання диференціальних рівнянь Гамільтона–Якобі.
Подобные документы
Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014- 52. Математичне та комп'ютерне моделювання фотохімічних процесів та визначення їх кінетичних параметрів
Розробка підходу для вибору межі локальної похибки методу чисельного розв'язання задач Коші, яка забезпечує отримання такого чисельного розв'язку, що зберігає фізичний зміст. Розв'язання задачі ідентифікації параметрів фотохімічного експерименту.
автореферат, добавлен 27.08.2014 Визначення поняття логарифмічного рівняння. Основна логарифмічна тотожність. Приклади логарифмічних рівнянь. Властивості логарифмів та найпростіші рівняння. Методи розв’язання рівнянь: за означенням, за властивостями логарифма та графічний метод.
разработка урока, добавлен 13.11.2015Встановлення умов розв’язуваності крайових задач для лінійних та слабконелінійних інтегро-диференціальних рівнянь з параметрами та обмеженнями і розробка ефективних методів проекційно-ітеративного типу побудови їх розв’язків. Теорії інтегральних рівнянь.
автореферат, добавлен 20.07.2015Поняття "наближене рівняння" та "степеневі ряди". Наближене обчислення значень функцій за допомогою рядів. Використання рядів для розв’язання рівнянь. Обчислення визначених інтегралів та інтегрування диференціальних рівнянь за допомогою рядів Фур’є.
курсовая работа, добавлен 23.09.2015Вивчення геометричного моделювання відбиваючих поверхонь за допомогою розробки методу просторового моделювання відбитого потоку. Аналіз алгоритмів геометричного моделювання параметрів форми і положення елементів-концентраторів для плоских колекторів.
автореферат, добавлен 29.08.2015Розробка оптимальних чисельних методів наближеного розв’язування жорстко некоректних задач. Розв'язання інтегральних рівнянь Фредгольма II роду з коефіцієнтами соболєвського типу гладкості за допомогою використання комбінації тіхоновської регуляризації.
автореферат, добавлен 20.07.2015Викладення прикладів застосування диференціальних рівнянь у великій кількості математичних моделей, явищ і процесах у різних галузях науки (біології, фізиці). Розв’язання задач на знаходження кривої, яка проходить через певну точку; швидкості та відстані.
лекция, добавлен 30.04.2014Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
автореферат, добавлен 10.01.2014Розв'язання відкритих запитань теорії рівнянь Даугавета та теорії властивості Радона-Нікодима, пов'язаних з геометрією зрізок опуклих множин. Взаємозв'язок між властивістю Рімана-Лебега та властивістю повної неперервності з огляду їх еквівалентності.
автореферат, добавлен 29.08.2015Геометрична суть складних залежностей між багатьма змінними. Розробка методів формалізованого геометричного розв'язування технічних задач різної фізичної природи. Багатовиди як геометричні моделі багатопараметричних складних залежностей багатьох змінних.
автореферат, добавлен 27.07.2014- 62. Про модифікацію узагальненого методу розв’язання інтегральних рівнянь типу Фредгольма другого роду
Визначення апріорної оцінки похибки методу. Побудова модифікації узагальненого методу розв’язання рівнянь. Описання інтегральних рівнянь типу Фредгольма. Розгляд питання про оцінку похибки наближеного розв’язання рівняння запропонованим методом.
статья, добавлен 30.01.2017 Оцінка ефективності використання диференціальних рівнянь при вирішенні задач математичної ідеалізації процесів і явищ, що досліджуються в небесній механіці. Загальні уявлення про асимптотичні методи розв’язків задач нелінійних інваріантних функцій.
автореферат, добавлен 06.07.2014- 64. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Розв’язння задачі Коші для багатовимірних систем лінійних функціонально-диференціальних рівнянь загального вигляду. Монотонна залежність розв’язання початкової задачі від адитивних збурень заданого рівняння та початкових умов, ітераційні процеси.
автореферат, добавлен 29.07.2014 Ознайомлення з алгебраїчними методами розв’язку нелінійних диференціальних рівнянь. Теоретично-групові та симетрійні властивості, що виникають при рішенні нелінійних еволюційних задач в прикладній математиці. Засоби інваріантно-групових розв’язків.
автореферат, добавлен 23.11.2013Розв’язування систем лінійних рівнянь з довільним числом невідомих. Методи розв'язування систем лінійних рівнянь: точні й ітераційні. Система двох рівнянь з двома невідомими. Розв’язання систем лінійних рівнянь методом Гауса, Крамера, матричним методом.
курсовая работа, добавлен 23.04.2011Методика побудови загального псевдорозв’язку систем лінійних алебраїчних рівнянь. Аспекти псевдообернення матриць на системи з розподіленими параметрами для розв’язання оберненних задач динаміки цих систем в обмежених просторово-часових областях.
автореферат, добавлен 11.11.2013Розв’язання задач на складання рівнянь, в яких кількість невідомих перевищує кількість рівнянь системи, які розв’язуються за допомогою нерівностей, з цілочисловими невідомими та в яких потрібно знаходити найбільші і найменші значення деяких виразів.
лекция, добавлен 25.01.2014Методи геометричного моделювання проточної частини діагональних турбін із забезпеченням керування формою меридіонального перерізу робочих коліс та профілів його лопаток. Вплив геометричних параметрів елементів турбін на форму їх аеродинамічних поверхонь.
автореферат, добавлен 13.07.2014Вдосконалення математичної моделі задачі оптимізації розміщення орієнтованих прямокутників для класу неперервно диференційованих функцій, цілі, розробка чисельних методів їх розв’язання. Розробка програмного забезпечення для розв’язання задач оптимізації.
автореферат, добавлен 28.08.2014- 71. Динаміка точки
Розгляд особливостей розв’язання завдань шляхом складання диференціальних рівнянь в певних початкових умовах із наступним аналізом результатів за допомогою ЕОМ. Характеристика варіантів вирішення завдання руху матеріальної точки з прикладом виконання.
учебное пособие, добавлен 16.07.2017 Розробка методів відшукання розв’язків крайових задач. Суть простої модифікації формули Даламбера. Аналіз теорії диференціальних рівнянь у частинних похідних. Побудова наближених періодичних рішень завдань для квазілінійних гіперболічних тотожностей.
статья, добавлен 28.07.2016- 73. Точність та обчислювальна складність наближеного розв’язування нелінійних функціональних рівнянь
Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.
автореферат, добавлен 28.09.2015 Розв'язання актуальної математичної проблеми побудови теорії інтерполяційних задач у класі Стільтьєса та вирішення на цій основі конкретних інтерполяційних задач. Опис значень дефектних чисел симетричних операторів, породжених блочними матрицями Якобі.
автореферат, добавлен 25.08.2014Простори інтегрованих з вагою функцій. Отримання точних за порядком оцінок узагальнених констант Лебега сум Фур’є-Якобі. Теорема про наближення функцій алгебраїчними поліномами та знаходження порядків наближення функцій певних класів сумами Фур’є-Якобі.
автореферат, добавлен 30.07.2015