Алгоритмы кластеризация по методу к-средних в пространствах с метрикой Минковского
Анализ данных с помощью определения структуры кластера. Изучение алгоритма поиска центра Минковского для кластеризации по методу к-средних для различных значений степени. Постановка задачи кластеризации. Описание алгоритма с использованием метрики.
Подобные документы
Понятие, задачи и области применения техники кластеризации. Классификация и особенности методов многомерного анализа. Построения горизонтальной древовидной диаграммы межгрупповой изменчивости. Разработка алгоритма объединения и интерпретация результатов.
реферат, добавлен 05.12.2019Статистика в пространствах произвольной природы. Изучение расстояний в различных пространствах данных. Аксиоматическое введение метрики в пространстве неотрицательных суммируемых функций. Мера симметрической разности как расстояние между множествами.
статья, добавлен 15.05.2017Анализ пространства как трехмерного континуума. Возможность четырехмерной трактовки "мира". Оценка пространства Минковского как четырёхмерного псевдоевклидового пространства сигнатуры, предложенного в геометрической интерпретации пространства-времени.
реферат, добавлен 15.05.2016Описание средних величин, которые можно применять для анализа данных, измеренных в порядковой шкале, шкалах интервалов и отношений и некоторых других. Особенности применения средних порядковых шкал по Коши и средних арифметических по Колмогорову.
статья, добавлен 19.01.2018Модификация модели вычислений, представляющей собой незавершенный метод ветвей и границ. Разработка подхода к формированию метрик на множестве подзадач в различных задачах дискретной оптимизации. Алгоритм кластеризации ситуаций в задачах оптимизации.
автореферат, добавлен 22.07.2018Распределенные вычисления, рассматриваемые на примере модели синхронной отправки сообщений в сети, множество процессоров связанных модулями связи. Поиск центра неориентированного дерева, псевдокод алгоритма. Анализ трудоемкости разработанного алгоритма.
контрольная работа, добавлен 29.06.2012Генетические алгоритмы для поиска экстремума многоэкстремальных функций. Методы генерации начальной популяции. Инициализация популяции на основе закона распределения. Одно- и многоэкстремальные функции. Досрочное прерывание генетического алгоритма.
статья, добавлен 30.05.2018Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.
контрольная работа, добавлен 30.10.2010Особенность изображения графов на рисунках. Описание организации структур данных. Характеристика простого и сложного орграфа. Отображение алгоритма поиска центра совокупности непустого множества вершин. Анализ исследования исходного кода программы.
контрольная работа, добавлен 07.01.2016Задача предиктивной кластеризации и прогнозирования хаотических временных рядов на много шагов вперед. Реализация алгоритма прогнозирования. Ограничение ошибки и непрогнозируемые точки. Исследование результатов для финансового ряда и ряда Лоренца.
дипломная работа, добавлен 01.12.2019Определение задач и основных этапов применения кластерного анализа. Использование методов иерархического агломеративного семейства при анализе результатов социологических исследований. Определение типов входных данных, целей и методов кластеризации.
реферат, добавлен 07.11.2018Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.
книга, добавлен 19.05.2011Выборочные средние в различных пространствах и законы больших чисел для них. Введение взвешенных средних I и II типа, соответствующих элементам выборки и членам вариационного ряда. Прослеживание эволюции представлений о расстоянии и медиане Кемени.
научная работа, добавлен 29.04.2017Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.
курсовая работа, добавлен 14.01.2016Методы разработки алгоритмов. Характеристика особенностей "жадных" алгоритмов. Анализ задачи о выборе заявок. Изучение методов определения правильности алгоритма. Изучение принципов жадного выбора. Жадный алгоритм и динамическое программирование.
реферат, добавлен 23.11.2019Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.
реферат, добавлен 07.10.2014Проблема идентификации и оценки максимального правдоподобия. Методы минимизации функций многих переменных. Оценивание параметров по методу максимального правдоподобия с использованием квадратно-корневых информационных фильтров, описание алгоритма.
дипломная работа, добавлен 30.10.2010Нахождение пути минимального веса между вершинами в нагруженном графе с помощью алгоритма Дейкстры. Максимальный поток в транспортной сети с использованием алгоритма Форда-Фалкерсона. Проверка по теореме Форда-Фалкерсона. Пропускные способности дуг.
курсовая работа, добавлен 03.10.2017Возможность применения генетического алгоритма к задаче криптоанализа тригонометрического шифра, разработанного В.П. Сизовым. Схема построения генетического алгоритма и анализ получаемых результатов для произвольных текстов на естественном языке.
статья, добавлен 26.04.2019Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.
дипломная работа, добавлен 29.10.2010Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.
курсовая работа, добавлен 04.12.2023Использование принципа линейной нормальной классификации объектов в многомерных пространствах признаков для построения классификаторов в случае множеств сложной структуры. Построение алгоритма проверки включения заданной точки пространства в множество.
статья, добавлен 30.05.2017Постановка задачи и построение модели алгоритма, описание и доказательство его правильности. Описание переменных программы и расчет вычислительной сложности. Использование одномерного массива размерности, совпадение начального и конечного результата.
реферат, добавлен 30.10.2010Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.
статья, добавлен 13.01.2014Постановка задачи одномерной минимизации и классификация одномерных функций. Алгоритм Свенна для поиска интервала унимодальности. Разработка алгоритма последовательной квадратичной аппроксимации. Расчет коэффициентов аппроксимации в Microsoft Excel.
курсовая работа, добавлен 19.06.2014