"Фракталы, их классификация, свойства и применение"
Основные понятия геометрии фракталов. Фрактал – множество, обладающее свойством самоподобия, история происхождения. Графическая интерпретация множества Мандельброта. Алгоритм построения пейзажа с помощью фрактала. Определение фрактальной размеренности.
Подобные документы
- 101. Оригами в геометрии
История происхождения, распространения оригами. Применение техники оригами, исследование возможностей применения оригами для решения геометрических задач и доказательство теорем. Сравнительные итоги срезов по изучению теоремы, изучение свойств биссектрис.
презентация, добавлен 16.11.2019 Теорема синусов и косинусов; свойства средней линии треугольника, медиан и биссектрисы. Формулы находжения ценров описанной и вписанной окружности. Свойства квадрата, ромба, прямоугольника, трапеции, конуса, цилиндра. Вычисление шарового сегмента и пояса.
контрольная работа, добавлен 12.03.2013Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.
лекция, добавлен 26.01.2014Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.
реферат, добавлен 31.01.2014Определение цепных дробей, их свойства и примеры. Представление действительных чисел цепными дробями общего вида. Золотое сечение – гармоническая пропорция, история данного понятия. Расчёт его числа при помощи ряда Фибоначчи и с помощью цепных дробей.
реферат, добавлен 07.11.2011Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.
курсовая работа, добавлен 07.07.2012Объяснение эффекта расширения пространства с помощью общей теории относительности и проективной геометрии. Применение корреляции и коллинеации в теории тяготения. Измерение внутренней гауссовой кривизны и гравитации. Свойства темной энергии и Абсолюта.
статья, добавлен 12.05.2018Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.
методичка, добавлен 07.08.2015- 109. Разработка алгоритмов различной структуры и их реализация с помощью компьютерных программных средств
Понятия алгоритма и его свойства, способы и виды описания. Линейный, условный, цикл. Программная среда Basic-256: история, используемые программные компоненты. Задача на нахождение минимального элемента массива и количество элементов, равных минимальному.
курсовая работа, добавлен 18.05.2020 Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.
лекция, добавлен 21.09.2017Логические связи и отношения, лежащие в основе логического вывода, с использованием языка математики. Объединение множеств. Аксиома Дедекинда. Понятие супремума. Обратная функция. Геометрическая интерпретация. Монотонная последовательность чисел.
контрольная работа, добавлен 12.10.2013Подробный алгоритм интерактивного построения геометрии модели в пакете ANSYS. Последовательность задания температурных граничных условий с помощью функции координат. Реализация всех этапов, предусмотренных сущностью конечно-элементного моделирования.
учебное пособие, добавлен 13.09.2015Изучение явлений природы и решение технических задач с помощью функций. Области определения и множество значений. Основные характеристики связки координат. Линейная, степенная и показательная кривая. Передел переменной величины при постоянном числе.
презентация, добавлен 14.11.2014Классификация методов обучения, применяемых на занятиях геометрии. Основные средства и приемы формирования практических умений и навыков при обучении геометрии на 2 курсе колледжа. Динамика развития экспериментальной работы и оценка результатов.
курсовая работа, добавлен 13.06.2015Алгоритм и основные этапы построения треугольной сети для заданной посредством контрольных точек поверхности NURBS. Сравнительная характеристика и анализ преимуществ использования двух распространенных методов подразбиений – Loop и Modified Butterfly.
статья, добавлен 21.06.2018Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.
контрольная работа, добавлен 29.08.2010Конструирование геометрического фрактала, обобщающего снежинку Коха. Обоснование конечности площади усложненной снежинки и бесконечности длины любого куска контурной фрактальной кривой. Формулирование проблемы о предполагаемых характерных свойствах.
научная работа, добавлен 28.10.2015- 118. Исследование функций
Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.
шпаргалка, добавлен 11.04.2012 Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
учебное пособие, добавлен 25.11.2013- 121. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 Изучение особенностей гармонического анализа Фурье. Вычисление площадей фигур с помощью интегралов. Исследование понятия "синусоида" и ее практического применения. Графическая иллюстрация анализа Фурье. Применение вейвлетов в математических алгоритмах.
реферат, добавлен 26.03.2019- 123. Понятие множества
Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.
презентация, добавлен 27.01.2017 Понятие множества, операции над ними. Основные элементарные функции, их графики. Односторонние пределы функции одной переменной. Бесконечно малые функции, их классификация. Непрерывность и дифференцируемость. Линии уровня и градиент функции переменных.
учебное пособие, добавлен 10.12.2012Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.
методичка, добавлен 17.09.2014