Математичне моделювання збурень фільтраційних процесів у пористих пластах
Розв’язка модельних нелінійних крайових задач на квазіконформні відображення для двозв’язних областей у випадках, коли коефіцієнт фільтрації (провідності) є тензором, залежить від координат точок області, шуканого потенціалу швидкості та його градієнта.
Подобные документы
Вивчення застосування методу Фур'є до задач математичної фізики для гіперболічного рівняння. Дослідження оцінки розподілу супремуму розв'язання рівняння коливання струни та аналіз застосування отриманих результатів до моделювання розв'язання рівняння.
автореферат, добавлен 30.08.2014Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле. Незмінність точкового спектру, повнота та мінімальність системи власних функцій. Дослідження властивостей розв’язків задач, отриманих у процесі.
автореферат, добавлен 26.02.2015Методи усереднення задач Діріхле для нелінійних еліптичних рівнянь другого порядку в змінних областях. Умови збіжності послідовності розв'язків нелінійних задач в перфорованих областях. Гранична задача з додатковим членом, що має місткісний характер.
автореферат, добавлен 23.11.2013Математичне моделювання одночасної абсорбції хлору і хлористого водню розчинами лугу. Моделювання та їх припущення, до реакції в рідкій фазі, протікання в області зовнішньої дифузії. Нейтралізація абгазів з газового потоку в хлорорганічних виробництвах.
статья, добавлен 29.07.2016Встановлення існування та єдності класичного розв’язку оберненої задачі для параболічного рівняння з виродженням, коли невідомий залежний від часу старший коефіцієнт прямує до нуля. Знаходження умов коректної розв’язності оберненої параболічної задачі.
автореферат, добавлен 29.09.2014Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле, що залишають незмінним точковий спектр, повноту та мінімальність системи власних функцій. Дослідження умови єдиності розв’язків збурених задач.
автореферат, добавлен 28.09.2015Дослідження особливостей основних питань однозначної розв’язності деяких крайових задач для загальних диференціальних рівнянь і систем із сталими комплексними коефіцієнтами в напівалгебраїчних областях. Характеристика методу двоїстості рівняння-область.
автореферат, добавлен 29.08.2015Визначення особливостей математичного моделювання під час викладання природничо-математичних дисциплін у закладах вищої освіти І-ІІ рівня акредитації та у закладах професійно-технічної освіти. Характеристика та специфіка алгоритму розробки моделей.
статья, добавлен 20.02.2022Розробка чисельно-аналітичних методів та обчислювальних алгоритмів побудови та дослідження загальних розв’язків прямих та обернених задач динаміки параболічних систем, що описують досліджувані процеси. Оцінка точності та критерії єдиності розв’язків.
автореферат, добавлен 27.04.2014Розробка (на основі методу Вішика-Люстерника) алгоритмів побудови асимптотичних розв’язків крайових задач Діріхле та Неймана, їх обґрунтування. Доведення теореми про порядок. Рішення диференціальних рівнянь параболічного типу при умовах імпульсної дії.
автореферат, добавлен 26.08.2014Метод структурно-алфавітного пошуку розв’язання задач комбінаторної оптимізації. Розпізнавання структури вхідної інформації. Оцінка швидкодії, точності знаходження оптимального результату. Вивчення підкласів розв’язних задач, їх комбінаторна оптимізація.
статья, добавлен 23.02.2016Методи моделювання адекватного опису складних дискретних систем, більшість з яких нелінійні. Універсальний підхід до розв’язання багатокритеріальних задач комбінаторної оптимізації, що спирається на методи математичної візуалізації та нелінійної динаміки.
автореферат, добавлен 20.04.2014Вивчення монотонного двостороннього методу для наближеного інтегрування задач з параметрами в нерозділених двоточкових крайових умовах у випадку систем квазілінійних диференціальних рівнянь. Встановлення достатніх умов існування та єдиності їх розв’язків.
автореферат, добавлен 26.08.2015Алгоритми побудови асимптотичних рішень нелінійних диференціальних рівнянь теплопровідності зі змінними коефіцієнтами, імпульсною дією, крайовими умовами Діріхле та Неймана. Розробка теорем про оцінку різниці між точним та наближеним розв’язками.
автореферат, добавлен 30.10.2015Методи оптимізаційного геометричного проектування, їх використання в моделюванні. Розв'язання оптимізаційних задач нерегулярного розміщення геометричних об'єктів в ізотропних і анізотропних областях розміщення із змінними метричними характеристиками.
автореферат, добавлен 23.11.2013Опис скінченновимірних розв'язних алгебр Лі над алгебраїчно замкненим полем характеристики, в яких доповнювані всі одновимірні ідеали. Доведення розв'язності алгебр Лі, які допускають лінійний оператор непарного порядку без ненульових нерухомих точок.
автореферат, добавлен 12.07.2015Розробка конструктивних засобів математичного моделювання. Побудова математичних моделей і розробка наближених методів розв’язання оптимізаційних задач розміщення n-паралелепіпедів та n-політопів в областях простору, що мають форму n-паралелепіпеда.
автореферат, добавлен 29.09.2015- 68. Компактні різницеві схеми високого порядку точності для нелінійних звичайних диференціальних рівнянь
Побудова точних компактних різницевих схем розв’язування крайових задач для нелінійних звичайних диференціальних рівнянь. Розробка алгоритмічної реалізації точних компактних схем через відсічені компактні різницеві схеми довільного порядку точності.
автореферат, добавлен 14.09.2014 Моделювання оптимального розміщення геометричних об'єктів у просторах розмірності більше ніж три. Створення конструктивних засобів математичного моделювання n-вимірних паралелепіпедів. Модифікація методу побудови опуклої оболонки скінченної множини точок.
автореферат, добавлен 29.09.2014Побудова конструктивних умов існування та алгоритмів знаходження розв’язків нетерових крайових задач для слабконелінійних систем звичайних диференціальних рівнянь. Побудова трьохкрокової ітераційної процедури та отримання умов збіжності цієї процедури.
автореферат, добавлен 17.07.2015Обґрунтування обчислювальних алгоритмів підвищеного порядку точності дискретизації нових класів початково-крайових задач для гіперболічних систем рівнянь. Характеристика особливостей математичних моделей динамічного деформування багатокомпонентних тіл.
автореферат, добавлен 17.07.2015Математичне моделювання у задачах економічного змісту. Системи лінійних рівнянь з двома змінними, рівняння бюджетної лінії, закон Госсена. Розв'язування задач на знаходження ринкової рівноваги. Задачі на визначення наборів товару раціональним споживачем.
контрольная работа, добавлен 24.01.2018Поняття геометричного місця точок у просторі та роль у розвитку просторової уяви. Теоретичне та практичне застосування поняття геометрії місця точок на площині. Розв'язання задач, в яких застосовується геометричні місця точок на площині та в просторі.
презентация, добавлен 16.01.2013- 74. Математичне моделювання дифузійних процесів у середовищах з випадковими та регулярними включеннями
Розробка підходів та методів математичного моделювання процесів масопереносу в багатофазних і багатокомпонентних тілах з урахуванням скінченних розмірів включень окремих фаз та їх випадкової природи. Дослідження міграції речовини в півпросторі та шарі.
автореферат, добавлен 30.08.2014 Поява диференціальних рівнянь. Методи збурень, які використовуються в механіці. Умови існування періодичних розв’язків. Теореми про граничні значення. Нелінійні диференціальні рівняння другого порядку. Методи розв’язання деяких типів нелінійних рівнянь.
курсовая работа, добавлен 22.06.2012