Синтез алгоритмов обучения нейронных сетей с нелинейными синаптическими входами для задач анализа и обработки информации
Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
Подобные документы
Особенность подготовки данных для обучения сети. Главный анализ формирования обучающих массивов в задаче. Вычисление суммы квадратичных отклонений выходов паутины от эталонов. Основная характеристика проведения результатов регрессионного анализа.
лабораторная работа, добавлен 14.01.2015Исследование принципа работы с аналитической платформы Deductor для создания законченных прикладных решений. Определение входных и выходных переменных. Методы нормализации данных и обучения нейронной сети. Запуск программы и способы вывода решений.
контрольная работа, добавлен 18.10.2014Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.
статья, добавлен 25.02.2019Представление знаний для решения интеллектуальных проблем. Принцип выбора потенциального дерева решения. Искусственные нейронные сети. Принцип работы искусственного нейрона, его формальная модель. Применение нейронных сетей, классификация нейронов.
учебное пособие, добавлен 26.08.2015Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Анализ модели нейрона, обладающей возможностью запоминания значения специально вводимого параметра состояния нейрона. Механизм реализации двухуровневой схемы эволюционирования нейронных сетей. Описание предлагаемых алгоритмов их функционирования.
статья, добавлен 19.12.2017Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.
курсовая работа, добавлен 05.06.2011- 84. Нейронные сети
Изучение типологии нейронных сетей. Основные отличия от машин с архитектурой фон Неймана. Оценка процессов, протекающих в мозге человека. Разработка демонстрационной версии программы Neural Network Wizard, созданной на основе нейронной сети Кохонена.
реферат, добавлен 13.04.2014 Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.
лекция, добавлен 13.09.2017На базе информации о векторе состояния нелинейной модели и его производной формирование статической нейронной сети, аппроксимирующей правую часть уравнений динамики. Линеаризация сети, в результате которой определение коэффициентов линейной модели судна.
статья, добавлен 28.10.2018Анализ процесса выбора оптимальной архитектуры нейронной сети, которая способна наиболее эффективно определять тональность сообщений на интернет-форумах. Рассмотрение применения искусственных нейронных сетей для решения социально значимых проблем.
статья, добавлен 14.04.2022Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Ознакомление со структурной схемой нейрона. Анализ методов отражения сути биологических нейронных систем. Исследование сравнительных характеристик нейрокомпьютеров и традиционных компьютеров. Рассмотрение формальной модели искусственного нейрона.
курсовая работа, добавлен 25.01.2015Автоматизация сбора, анализа и обработки данных в супермаркете. Разработка программы для распознавания лиц в живой очереди или изображений в реальном времени. Архитектура нейронной сети. Общий вид и назначение персептрона, оценка точности его работы.
статья, добавлен 25.02.2019Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Разработан и описан алгоритм процесса конвертирования поступающих в программный комплекс исполняемых файлов в черно-белые изображения, позволяющий сформировать собственный набор данных для обучения нейронной сети на основе полученных изображений.
статья, добавлен 16.05.2022Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Предложение по решению задачи индексирования больших массивов информации. Особенности применения нейронной сети для точного ранжирования документов, имеющих шанс оказаться на высоких местах в выдаче по результатам более грубой оценки их релевантности.
статья, добавлен 26.04.2017Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.
курс лекций, добавлен 17.01.2011Построение физической модели сети предприятия. Выбор маски подсетей. Распределение IP адресов в подсетях. Выбор сетевого оборудования. Настройка и проверка работоспособности сети. Настройка протокола TCP/IP. Диагностика и поиск неисправностей в сети.
курсовая работа, добавлен 12.11.2017Особенности использования нейросетевых технологий для подавления шума в информационных сигналах. Настройка структуры нейронной сети. Оптимизация весовых коэффициентов, пороговых значений функции активации. Эффективность автоматически сгенерированной сети.
статья, добавлен 19.01.2018Моделирование поведения живых существ в процессе исследований в области искусственного интеллекта. Особенности искусственного нейрона и структура нейронных сетей. Осуществление диагностики с помощью использования пакета Statistica Neural Networks.
статья, добавлен 29.01.2016Распознавание символов по скелетному изображению, использование нейронной сети. Вычисление набора признаков скелета символа, его идентификации по результатам обучения нейронной сети. Устойчивость алгоритма к искажениям символов и параметрам шрифта.
статья, добавлен 25.09.2012Искусственная нейронная сеть, обеспечивающая последовательное выделение окрашенных гауссовых сигналов из смеси. Правило обучения каскадной нейронной сети, основанное на критерии минимума среднего квадрата ошибки предсказания, упрощающее реализацию сети.
статья, добавлен 22.07.2013