Определитель второго порядка. Решение системы двух линейных уравнений с двумя переменными методом Крамера
Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.
Подобные документы
Решение дифференциального уравнения первого порядка и первого порядка с разделяющимися переменными. Динамические модели в экономике: модели Эванса и Солоу. Однородные и линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
курсовая работа, добавлен 08.02.2011Решение системы линейных алгебраических уравнений с тремя неизвестными. Решение системы уравнений методом Крамера. Построение опорного плана транспортной задачи и проверка его оптимальности, построение симплекс-таблицы. Поиск точек экстремума функции.
контрольная работа, добавлен 05.11.2012Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.
курс лекций, добавлен 20.08.2017- 104. Высшая математика
Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.
учебное пособие, добавлен 05.05.2015 Сущность построения математической модели экономического процесса. Геометрическое истолкование дифференциального уравнения. Задача Коши. Общие свойства решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.
курсовая работа, добавлен 17.01.2011Нахождение обратной матрицы с помощью правила умножения матриц. Решение системы линейных уравнений с тремя неизвестными методом Крамера. Вычисление координаты точки пересечения медиан, длины высоты, опущенной из вершины, площади заданного треугольника.
контрольная работа, добавлен 09.02.2015- 107. Линейная алгебра
Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.
учебное пособие, добавлен 17.04.2013 Понятие матрицы и ее виды. Определители 2-го и 3-го порядков. Совместимость систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Использование систем линейных уравнений при решении экономических задач. Производные функции, их применение.
учебное пособие, добавлен 02.02.2012Понятие и назначение определителей, основные положения их теории, методы вычисления и свойства. Минор и алгебраическое дополнение элемента определителя. Метод эффективного понижения порядка. Сущность матриц и порядок проведения операций над ними.
контрольная работа, добавлен 26.07.2009Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.
статья, добавлен 14.07.2016Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018- 112. Высшая математика
Основные действия над матрицами. Решение произвольных систем уравнений Крамера и Гаусса. Коллинеарные и компланарные векторы. Кривые второго порядка. Аналитическая геометрия в пространстве. Поверхности вращения. Бесконечно малые функции. Графы и сети.
курс лекций, добавлен 05.03.2016 Изучение уравнений с двумя переменными пределами интегрирования, которые называют неклассическими. Трудности в построении резольвенты. Установление достаточных условий регуляризации решения неклассического интегрального уравнения Вольтерра I рода.
автореферат, добавлен 12.05.2018- 114. Комплексные числа
Понятия о комплексных числах, история их применения при решении линейных дифференциальных уравнений и вычислении интегралов. Правила сложения, вычитания, умножения и деления комплексных чисел. Порядок решения уравнений с комплексными переменными.
реферат, добавлен 06.03.2010 Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.
контрольная работа, добавлен 04.09.2013Система, имеющая более чем одно решение (неопределенная). Метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида. Применение метода Крамера.
презентация, добавлен 23.08.2016Технология решений систем линейных алгебраических уравнений в интегрированной среде MathCad. Определение решения системы методом простой итерацией и матричным методом. Значение коэффициентов при неизвестных. Математическая палитра интегрированной среды.
лабораторная работа, добавлен 16.05.2015Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012- 119. Нелинейная свободная система второго порядка, описываемая обыкновенным дифференциальным уравнением
Представление исходной нелинейной свободной системы второго порядка в виде системы дифференциальных уравнений первого порядка и ее линеаризация. Изучение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа, добавлен 22.05.2012 Постановка основной задачи линейного программирования. Графический метод решения ОЗЛП с двумя переменными. Преобразование системы уравнений методом полных жордановых исключений. Расчетный алгоритм симплекс-метода. Понятие и запись оптимального плана.
учебное пособие, добавлен 17.04.2013Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.
курс лекций, добавлен 19.09.2015Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.
курсовая работа, добавлен 26.12.2012Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.
учебное пособие, добавлен 24.10.2012Решение математической задачи методом Гаусса, с выбором главного элемента. Расчеты линейных алгебраических уравнений по Гауссу-Жордано, Зейделю с заданной точностью и простыми итерациями. Вычисление определителя системы. Нахождение обратной матрицы.
задача, добавлен 22.06.2015