Генерирующие многочлены
Понятие генерирующего многочлена. Построение генерирующих многочленов для прямого произведения группы меньших порядков, конкретных многочленов с рациональными коэффициентами для циклической группы восьмого порядка. Математическое описание их свойств.
Подобные документы
Изучение геометрического смысла смешанного произведения нескольких некомпланарных векторов, лежащих в основании параллелепипеда. Доказательство равенства скалярного произведения, не зависящего от порядка множителей. Обзор свойств линейности равенства.
лекция, добавлен 29.09.2013Изучение понятия аффинной структуры в контексте однородного пространства и понятия группы, которое возникло путем абстракции из понятия группы преобразований, и полностью проявляет себя, когда рассматривается действие группы на некотором множестве.
реферат, добавлен 26.02.2010Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.
курс лекций, добавлен 23.10.2013Изучена методика выполнения оценивания компетентности группы экспертов на стадии выявления знаний. Суть методики сводится к тому, что ряду специалистов предлагается высказать мнение о составе экспертной группы. По результатам опроса составляется матрица.
практическая работа, добавлен 08.02.2024Построение стереографической проекции всех элементов симметрии точечной группы в стандартной установке с использованием сетки Вульфа. План пространственной группы симметрии. Определение видов многогранников. Расчет кратности системы точек проекции.
контрольная работа, добавлен 06.03.2012Ознакомление с формулами Каца–Вейля и функциями Холла–Литтлвуда. Рассмотрение многогранников Гельфанда–Цетлина. Формульное выражение многочленов. Моделирование аффинных функций. Доказательство соответствия между гранями и подграфами многоугольников.
диссертация, добавлен 28.12.2016Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.
учебное пособие, добавлен 05.03.2010Факторизация целых чисел с экспоненциальной сложностью. Эллиптические кривые и их свойства. Дискретное логарифмирование в полях Галуа. Решение систем линейных уравнений. Дискретное преобразование Фурье и умножение многочленов. Детерминированные методы.
монография, добавлен 03.07.2013Для различных приложений функций нескольких переменных построен алгебраический подход к построению многочленов, формулы которых содержат символьные переменные. Примеры демонстрируют эффективность и широкий охват решаемых научно-технических задач.
статья, добавлен 08.05.2021Понятие и сущность кривой второго порядка, определение координат центра и радиуса окружности. Специфика и описание эллипса, построение декартовой системы координат. Характеристика канонического уравнения гиперболы и параболы, их отличительные черты.
лекция, добавлен 09.07.2015Определение ручных и диких алгебр. Общее представление о системах с абелевым радикалом. Анализ гипотезы Чередника-Орра. Изучение несимметрических многочленов Макдональда, модуля Вейля и теории квантовых граф Брюа. Рассмотрение случаев малых рангов.
диссертация, добавлен 28.12.2016Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011Линейные пространства прямоугольных и квадратных матриц, многочленов и непрерывных вещественных функций. Теоремы, применяемые к квадратным матрицам. Зависимость в линейных пространствах и линейная комбинация элементов. Линейно независимые подсистемы.
лекция, добавлен 18.02.2010Сплайн интерполяция, ее практическое значение. Определение кубического полинома в промежутке между известными узлами. Расчет параметров кубических интерполяционных сплайнов. Группа сопряженных кубических многочленов, в местах сопряжения которых функция.
презентация, добавлен 26.12.2012Уравнение прямой с направляющим вектором. Математическое описание прямой с нормальным вектором. Уравнение прямой с угловым коэффициентом. Математическое выражение кривых второго порядка. Полярная система координат. Векторная функция скалярного аргумента.
презентация, добавлен 29.09.2017- 91. Схема Горнера
Схема Горнера как алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Решение уравнений высшей степени (деление многочлена с помощью схемы Горнера). Ее использование для деления многочлена на бином.
презентация, добавлен 18.12.2018 Решение дифференциального уравнения первого порядка и первого порядка с разделяющимися переменными. Динамические модели в экономике: модели Эванса и Солоу. Однородные и линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
курсовая работа, добавлен 08.02.2011Разработка метода исследования дифференциальных уравнений с-образными коэффициентами с помощью аппроксимирующих семейств операторов, являющихся возмущениями исходного оператора. Применение теории к исследованию уравнений с-образными коэффициентами.
автореферат, добавлен 18.08.2018Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.
лекция, добавлен 14.05.2013Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.
контрольная работа, добавлен 26.11.2012Задача о числе счастливых билетов и формула Бинома Ньютона. Определение производящей функции. Восстановление элементов последовательностей по известным производящим функциям. Числа и многочлены Фибоначчи и Люка. Последовательность с двумя индексами.
курсовая работа, добавлен 13.05.2014Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Канонические уравнения невырожденных поверхностей второго порядка и их графическая интерпретация. Коническая и цилиндрическая поверхности. Определение их форм и свойств с помощью метода сечений. Построение тела, ограниченного гиперболоидом и сферой.
лекция, добавлен 09.07.2015Группы со следующим условием инцидентности: любые две истинные подгруппы, порядок пересечения которых не делит фиксированное число n. Непримарные конечные нильпотентные Fn-группы с непустым множеством. Следствия и доказательства лемм, их достаточность.
статья, добавлен 26.04.2019