Архимед. Его достижения в области математики
Представление об Архимеде, как о человеке и ученом. Его научные находки. Решение проблемы квадратуры круга. Версии его гибели. Последователи идей Архимеда. Его достижения и открытия в математике и других областях науки. Список дошедших до нас трудов.
Подобные документы
Анализ перспектив и "точек роста" современной теоретической и вычислительной математики. Теория нечетких множеств. Развитие идеи системного обобщения математики в области теории информации. Реализация идей системного интервального обобщения математики.
статья, добавлен 29.04.2017История развития начертательной геометрии как науки. Достижения и открытия наиболее известных древнегреческих геометров. Возникновение и развитие способа ортогональных и аксонометрических проекций. Направления изучения начертательной геометрии.
реферат, добавлен 17.03.2015Греческая система счисления, основанная на использовании букв алфавита. Греческая тригонометрия и ее приложения в астрономии. Начало современной математики, достижения в алгебре. Создание дифференциального и интегрального исчислений, основные методы.
реферат, добавлен 07.04.2014Понятие, классификация и описание существующих систем координат. История их открытия. Формулы и правила построения кривых в математике и информатике. Прямые и изогнутые линии в природе, технике, живописи. Построение круга на плоскости и в пространстве.
презентация, добавлен 15.04.2014Понятие, сущность и характеристика математики и философии как науки. Влияние математики на философию, последствия их роль и описание. Соотношение математики и логики, а также полученные результаты. Понятие об иррациональном числе, особенности исчисления.
реферат, добавлен 08.02.2009Характеристика системного анализа как совокупности теоретических и эмпирических положений из области математики, естественных наук и опыта разработки сложных систем, обеспечивающей решение конкретной проблемы. Понятие системы как семантической модели.
лекция, добавлен 28.03.2020- 32. Архимед
Архимед как вершина научной мысли древнего мира. Годы обучения математика. Метод расчета площади параболического сегмента. Первый закон гидростатики. Сущность теории пяти механизмов. Изобретение бесконечного винта. Система зеркал, водонапорная машина.
презентация, добавлен 11.12.2014 Этапы развития математики как науки. Становление математики в Древней Греции, Индии, Средней Азии. Введение системы координат, методов измерения величин и понятия функции. Вклад русских ученых в развитие математики. Перспективы развития кибернетики.
реферат, добавлен 18.09.2014Зародження математики (з глибокої давнини до VI-V ст. до нашої ери). Розвиток математики до ХVII століття. Характеристика періоду математики змінних величин ХVII-XIX століття. Аналіз періоду сучасної математики. Внески вчених-математиків у розвиток науки.
реферат, добавлен 23.10.2015Решение химических задач и проблем методами современной математики. Симметрия в химии, дифференциальные уравнения. Графическое представление молекул и их свойств – теория графов в химии. Математическая химия. Пример математического моделирования.
презентация, добавлен 02.05.2018Изучение периодов зарождения и становления математики. Проблема счета – первая ключевая проблема античной математики. Анализ проблемы измерения, стимулировавшей развитие математики на стадии ее зарождения. "Математика. Утрата определенности" по М. Клайну.
реферат, добавлен 06.12.2009Математика как экспериментальная наука, часть теоретической физики и член семейства естественных наук. История и основные этапы ее становления и развития, выдающиеся ученые и их достижения. Оценка роли и значения математики в инженерном направлении.
реферат, добавлен 08.12.2014Рассмотрение становления математики как науки. Описание периодов элементарной математики и математики переменных величин. Создание аналитической геометрии, дифференциального и интегрального исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат, добавлен 26.12.2014Математика на клинописных табличках. Система счисления, созданная вавилонянами. Египетская непозиционная десятичная система. Дедуктивный характер греческой математики. Величайший математик древности - Архимед. Великие геометры эпохи Возрождения.
курс лекций, добавлен 13.03.2017Прямая и окружность. Построение на бумаге полного эллипса, циклоида, кривой кратчайшего спуска, спирали Архимеда, логарифмической спирали. Общее свойство конических сечений. Решение задач Архимеда, теоремы Паскаля. Разнообразие н богатства форм лемнискат.
реферат, добавлен 31.10.2012Изучение особенностей биографии древнегреческого математика и автора первых теоретических трактатов Эвклида. Исследование его главных трудов. Рассмотрение основных заслуг Эвклида в математике. Характеристика исторического значение труда "Начала".
реферат, добавлен 02.04.2014Математические достижения Леонардо Фибоначчи, их влияние на экономику, финансы и некоторые области архитектуры. Краткие биографические данные известного математика. Основные идеи "Книги абака", Числовая последовательность Фибоначчи и золотое сечение.
контрольная работа, добавлен 03.02.2013Роль Софуса Ли в создании фонда по присуждению премий математикам. Исторический анализ процесса становления Премии Абеля, лауреаты главной математической премии и их главные достижения. Использование Фюрстенбергом и Маргулисом вероятностных методов.
статья, добавлен 08.04.2022Понятие и содержание числа, этапы его эволюции. Вычислительная техника вавилонян и египтян, их отличия. Пифагор и его школа, учения о числе. Периоды развития математики. Системы счисления в Древней Греции. Способ наименования больших чисел Архимеда.
шпаргалка, добавлен 22.01.2011История возникновения и развития математики в Древнем Египте, её использование при расчетах в строительных работах, сборе налогов, разделе имущества, измерении площадей полей. Философские проблемы математики, направления обоснования науки XX века.
реферат, добавлен 02.03.2015Появление математики как систематической науки и влияние на философское мышление. Философские предпосылки обоснования исчисления бесконечно малых в эпоху Возрождения. Неевклидовы геометрии и развитие философии математики в XIX веке. Математика в XX веке.
реферат, добавлен 11.09.2010История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Виды правильных многогранников. Равносторонние треугольники в составе тетраэдра. Модель солнечной системы Кеплера. Икосаэдро-додекаэдровая структура Земли. Выпуклые правильные многогранники. Теорема Эйлера, тела Архимеда. Многогранники в химии и биологии.
презентация, добавлен 06.03.2012Кривая кратчайшего спуска. Спираль Архимеда, особенности её изображения. Главное свойство логарифмической спирали. Содержание теоремы Паскаля, её иллюстрация. Теорема французского математика Шарля Барианшона. Лемнискаты Бернулли с двумя фокусами.
контрольная работа, добавлен 25.05.2012Формирование, развитие и взаимовлияние математики и философии Древней Греции. Милетская математическая школа, заложившая основы математики как доказательной науки. Роль математики в формировании элейской философии. Система философии математики Аристотеля.
реферат, добавлен 30.10.2010