Метод математической индукции
Математическая индукция как способ математического доказательства, роль индуктивных выводов в экспериментальных науках. Интерпретация данных в зависимости от выбранной аксиоматики. Полная и неполная индукция, их применение для доказательства теорем.
Подобные документы
Время жизни Пифагора Самосского, получение им образования. Доказательства теоремы Пифагора: способом достроения квадрата, методом построения и разложения. Доказательство, основанное на использовании понятия равновеликости фигур. Аддитивные доказательства.
реферат, добавлен 03.04.2017Характеристика доказательства по заданному модусу путем построения диаграмм Эйлера. Изучение методов математической логики для формализации высказывания. Доказательство общезначимости формулы, используя законы алгебры, равносильные преобразования.
контрольная работа, добавлен 05.09.2016Исторические вехи становления аксиоматического метода и его роль в развитии математического образования. Интерес к методам научного познания, к природе математических понятий и аксиом и логике доказательства. Дискуссии о дискурсивном и интуитивном знании.
статья, добавлен 16.03.2019Теорема Пифагора - жемчужина античной математики. Не алгебраические и алгебраические доказательства теоремы. Математические трактаты Древнего Китая. Сравнение доказательства Евклида с древнекитайскими или древнеиндийскими. Головоломка "Пифагор".
реферат, добавлен 07.06.2009Подборка задач олимпиадного и исследовательского типов, которые сгруппированы по классам. Доказательство от противного. Описание метода крайнего. Уход на бесконечность и малые шевеления. Принцип Дирихле, алгоритм Евклида, индукция. Делимость и остатки.
книга, добавлен 10.01.2013Математическая статистика как наука о математических методах систематизации и использовании статистических данных для научных и практических выводов. Знакомство с исследованиями зависимости изменения спроса на товар (Y) от изменения его цены (X).
курсовая работа, добавлен 25.03.2020Биография Пифагора. Неалгебраические доказательства теоремы. Древнекитайское, древнеиндийское доказательство. Доказательство Евклида. Алгебраические доказательства теоремы. Первое и второе доказательство. Определение косинуса угла. Головоломка "Пифагор".
реферат, добавлен 30.01.2016Открытие теоремы Пифагором. Легенда о заклании быков Пифагором. Некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Биография Пифагора. Древнекитайское, древнеиндийское, а также алгебраические доказательства теоремы.
реферат, добавлен 14.12.2012Математика как наука о количественных отношениях и пространственных формах действительного мира. Этапы развития математики. Использование в математике двух видов умозаключений: дедукции и индукции. Роль математики в различных областях деятельности.
реферат, добавлен 18.06.2012Цель изучения математики: повышение общего кругозора, культуры мышления, формирование научного мировоззрения. Два вида умозаключений: дедукция и индукция. Основные закономерности построения сходных по форме логических связей в математическом мышлении.
контрольная работа, добавлен 16.11.2010Исследование соотношения концепций понимания и доказательства в математической практике. Эпистемические требования при передоказательстве теоремы. Интерпретация вхождения семантического содержания в синтаксические структуры. Примёмы дедуктивного вывода.
статья, добавлен 23.09.2020Особенности применения метода дополнительного аргумента к решению характеристической системы. Оценка доказательства эквивалентности систем. Изучение доказательства существования решения задачи Коши. Дискретизация исходной задачи и её решение итерациями.
дипломная работа, добавлен 21.10.2017Математическая логика как раздел математики, посвящённый изучению способов доказательств, утверждений, вопросов оснований математики. Умозаключение и его способы получения нового знания на основе некоторого имеющегося. Формальные аксиоматические методы.
курсовая работа, добавлен 21.04.2015Индукция в геометрии и комбинаторике. Иррациональность значений тригонометрических функций. Квадратный трехчлен и фазовая плоскость. Комплексные числа и операции с ними. Треугольник Паскаля и его свойства. Пути и отображения комплексной плоскости.
учебное пособие, добавлен 18.06.2015Оптимальные эквиваленты произведения сумм - метод отражения максимальной предельной оценки в виде объективного критерия эффективности автоматического контроля адаптивного диапазона. Сущность метода индукции на численных примерах итерационного анализа.
статья, добавлен 15.07.2018Основные понятия математической статистики, ее виды и их характеристики. Анализ экономической информации с помощью однофакторного дисперсионного анализа на примере города. Вычисление статистик, гипотез или выводов по существу эмпирических данных.
курсовая работа, добавлен 08.01.2014Эвристика как метод научного познания: особенности применения в математике, понятие доказательства в математике. Эвристические приемы построения математических доказательств. Особенности применения эвристического подхода при доказательстве теорем.
курсовая работа, добавлен 22.11.2010Развитие дедукционного метода в геометрии от "Начал" Эвклида до аксиоматики Гильберта. Основные понятия геометрии - аксиомы и постулаты, соотношения между ними; определения фигур и доказательства геометрических предложений; модели Лобачевского и Клейна.
книга, добавлен 28.03.2013История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.
реферат, добавлен 08.05.2012"Единая теория поля" — первая подлинно геометризованная концепция, толкующая электромагнитное поле как геометрический феномен. Четыре группы аксиом Вейля и доказательства их справедливости с построением математических моделей систем.
реферат, добавлен 26.03.2014Понятие эвристики как метода научного познания, особенности ее применения в математике. Понятие доказательства в математике и его особенности, применение для его построения эвристических логических подходов. Эвристический подход при доказательстве теорем.
курсовая работа, добавлен 19.02.2012Основные задачи математической статистики и ее применение в психолого-педагогических науках. Шкалирование, виды шкал. Программные продукты для обработки информации. Выявление различий в уровне исследуемого признака. Факторный и кластерный анализ.
курс лекций, добавлен 02.10.2014Теоретическое исследование некоторых обобщённых модулей гладкости типа Якоби и доказательства прямой и обратной теорем теории приближений. Вычисления обобщённых модулей гладкости некоторых не периодических функций с помощью теорем Леберга, Минковского.
дипломная работа, добавлен 11.01.2011Характеристика методов обработки экспериментальных данных. Оценка распределений, проверка гипотез о распределениях. Оценка математического ожидания и дисперсии случайной величины. Расчет доверительных интервалов для математического ожидания и дисперсии.
контрольная работа, добавлен 26.10.2017Исследуются определения понятий "выборка" и "гипотеза". Рассматриваются основы отбора экспериментальных групп, выдвижение гипотезы, использование критерия хи-квадрат для обработки и представления экспериментальных данных и формулирования выводов.
статья, добавлен 11.07.2018