Алгоритмы размещения элементов
Формальное содержание и принципы разрешения задачи размещения. Критерий минимума суммарной длины соединений и определение их длины. Типы используемых алгоритмов: конструктивные, итерационные, непрерывно-дискретные, математического программирования.
Подобные документы
Изучение особенностей графического и симплексного методов решения задач линейного программирования. Геометрическая интерпретация ограничений. Нахождение максимального значения целевой функции задачи. Определение и построение области допустимых решений.
контрольная работа, добавлен 26.05.2015Вычисление углов в треугольнике по дискреционным углам и определение длины его сторон. Проектирование трапецией фермерского участка. Вычисление координат точек и контроль площади. Проектирование участка земли под малое предприятие площадью 0,5 га.
контрольная работа, добавлен 31.10.2017Определение уравнения прямой. Расчет координаты точки, уравнения плоскости. Вычисление координаты точки пересечения двух прямых, длины отрезка, отсекаемого от оси абсцисс плоскостью, проходящей через прямую. Анализ формы кривой по заданному уравнению.
контрольная работа, добавлен 29.10.2012Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
контрольная работа, добавлен 22.08.2014Основные определения, понятия, свойства криволинейного интеграла. Определение массы кривой с переменной линейной плотностью. Расчет площади цилиндрической поверхности. Притяжение материальной точки материальной кривой. Вычисление длины всей кривой.
курсовая работа, добавлен 21.09.2015Система FLOWer как набор утилит, облегчающих написание параллельных программ, ее базирование на модели управления потоком данных. Реализация некоторых алгоритмов в системе FLOWer. Умножение матриц. Прямые и итерационные методы решения линейных систем.
дипломная работа, добавлен 13.09.2011Характеристика кривой линии как множества точек пространства, координаты которых являются функциями одной переменной. Определение длины отрезка кривой. Изучение особенностей алгебраических, трансцендентных кривых. Анализ особенностей плоских кривых линий.
реферат, добавлен 22.12.2015- 108. Теория вероятности
Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.
курс лекций, добавлен 29.09.2014 Математическое моделирование, форма и принципы представления моделей и особенности их представления. Компьютерное моделирование при обработке опытных данных, типы интерполяции. Этапы алгоритма сглаживания опытных данных методом наименьших квадратов.
курс лекций, добавлен 19.06.2015Оценка скорости работы систем кодирования, в которых используется алгоритм преобразования равновесных кодов в биномиальные и возможность применения их в практических задачах сжатия информации. Определение средней длины биномиальных кодовых комбинаций.
статья, добавлен 26.10.2010Развитие способности понимать идеи размещения, сочетания, симметрии, классификации и обобщения посредством построения магических квадратов. Содержание "Теории магических матриц" Чебракова. Сущность метода террас. Организация планирования экспериментов.
презентация, добавлен 15.02.2012Рассмотрение эллипса как трехмерной функции, все точки которой лежат в одной плоскости под углом к плоскости круга, для нахождения решения эллиптического интеграла. Образование семейства кривых от окружностей в плоскости. Определение длины дуги эллипса.
статья, добавлен 03.03.2018Сущность и содержание исследуемого метода как процедуры эвристического типа, предваряющей использование метода одномерного поиска, которому требуется начальный отрезок локализации минимума. Алгоритм Свенна, его этапы и назначение. Метод деления пополам.
контрольная работа, добавлен 05.07.2014Непрерывные случайные числа, функция распределения вероятности. Вычисление математического ожидания функции дискретной случайной величины. Дисперсия и стандартное отклонение. Конфликт между несмещенностью и эффективностью. Среднеквадратичная ошибка.
презентация, добавлен 26.01.2015- 115. Численные методы
Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.
учебное пособие, добавлен 22.05.2014 - 116. Случайные величины
Случайная величина, которая в зависимости от исхода испытания случайно принимает одно из множества возможных значений. Непрерывные и дискретные случайные величины. Основные свойства функции распределения, математического ожидания, коэффициента корреляции.
реферат, добавлен 25.02.2011 Области применения равносильных преобразований алгоритмов. Схемы представления алгоритмов и алгебра событий. Соответствие событий переходам в инверсном графе. Способы регулярного выражения алгоритма. Определение последующих степеней символьных матриц.
статья, добавлен 08.12.2018Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.
контрольная работа, добавлен 02.02.2010История зарождения и создания линейного программирования. Разработка симплекс-метода и рассмотрение задач отыскания условного экстремума функции. Графический способ решения различных задач линейного программирования, изображение геометрических условий.
курсовая работа, добавлен 04.04.2011Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.
статья, добавлен 20.04.2019Алгебраический симплекс метод. Проверка плана на оптимальность. Определение ведущих столбца и строки. Построение нового опорного плана. Решение задачи линейного программирования на минимум целевой функции. Применение симплексного метода в экономике.
курсовая работа, добавлен 19.06.2012Элементы комбинаторики, перестановки, размещения, сочетания. Формульное задание элементарных функций алгебры логики. Принцип двойственности. Разложение булевой функции по переменным. Задачи и упражнения по алгебре логики. Минимизация булевых функций.
учебное пособие, добавлен 08.02.2015Типы математиков: интуитивисты и формалисты. Классификация стилей ученых по линии противопоставления. Стили мышления Д. Гильберта и Э.Я. Брауэра. Проблема непрерывности и полноты, существования математического объекта, природы мышления, единства мира.
реферат, добавлен 04.09.2010Применение теории графов в геоинформационных системах. Использование простейших методов решения задачи коммивояжера. Постановка оптимизационной задачи и критерий оптимальности для задачи коммивояжера. Применение в логике математических методов.
контрольная работа, добавлен 18.02.2015- 125. Частотные критерии устойчивости. Принцип аргумента. Критерий устойчивости Михайлова и Найквиста
Определение достоинств и недостатков критерий устойчивости Михайлова. Формулировка критерия устойчивости Найквиста для случая, когда система в разомкнутом состоянии неустойчива. Определение запасов устойчивости или нейтральности по фазе и по амплитуде.
статья, добавлен 26.08.2017