Задачі ідентифікації характеристик середовища і параметрів квазіідеального процесу за умов їх взаємовпливу
Метод числового розв'язання нелінійних задач теорії комплексного квазіпотенціалу для нелінійно-шаруватих криволінійних областей. Розв’язання прямої задачі знаходження потенціалу поля, ідентифікації значень коефіцієнта провідності на границі області.
Подобные документы
Розробка програмного забезпечення для розв’язку задачі математичного характеру. Історія виникнення методу Крамера, характеристика його переваг, можливе використання. Створення алгоритму програми, перевірка отриманих розрахунків в програмі Excel.
курсовая работа, добавлен 28.11.2016Побудова та обгрунтування схеми заміщення електричної мережі. Обгрунтування та проведення нумерації віток схем заміщення. Визначення параметрів режиму і параметрів системи для електричної мережі. Метод розв’язання системи лінійних алгебраїчних рівнянь.
курсовая работа, добавлен 08.02.2011Визначення поняття логарифмічного рівняння. Основна логарифмічна тотожність. Приклади логарифмічних рівнянь. Властивості логарифмів та найпростіші рівняння. Методи розв’язання рівнянь: за означенням, за властивостями логарифма та графічний метод.
разработка урока, добавлен 13.11.2015Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.
автореферат, добавлен 27.04.2014- 80. Методи та засоби розв'язання слабоструктурованих задач формування розкладів та розподілу ресурсів
Проектування методів та засобів формування розкладу та розподілу ресурсів як слабоструктурованої задачі. Метод покрокового формування рішення з переміщенням раніше призначених подій. Параметри і джерела слабоструктурованості процесу прийняття рішень.
автореферат, добавлен 25.06.2014 Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
автореферат, добавлен 10.01.2014Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014Розв’язок задачі Коші для системи рівнянь із частинними похідними другого порядку за часовою змінною у класах аналітичних функцій та у просторах Соболєва. Розв’язки двоточкової задачі. Класи аналітичних функцій та простори Соболєва як класи єдиності.
автореферат, добавлен 28.07.2014Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014Схема знаходження коефіцієнтних умов існування розв’язків слабозбурених лінійних крайових задач для систем з імпульсною дією в фіксовані моменти часу. Метод Вішіка-Люстерніка, ефективні коефіцієнтні умови розв’язків крайової задачі у вигляді рядів Лорана.
статья, добавлен 30.01.2017- 87. Періодичні розв’язки нелінійних диференціальних рівнянь з імпульсною дією в нефіксовані моменти часу
Дослідження нелінійних динамічних систем з короткотривалими процесами. Встановлення умов існування періодичних рішень для коливних систем на площині. Знаходження умов існування періодичних розв'язків коливних систем. Методи теорії диференціальних рівнянь.
автореферат, добавлен 22.04.2014 Теорії геометричного моделювання узагальнених паралельних множин для розв’язання задач формоутворення геометричних об’єктів. Їх опис за допомогою нормальної і нормалізованої функцій та шляхом розв’язання диференціальних рівнянь Гамільтона–Якобі.
автореферат, добавлен 29.09.2015Два підходи організації ітераційних процесів для розв’язання нелінійних задач при формуванні дискретних образів статико-геометричним методом. Приклади, які демонструють використання цих принципів. Проведення аналізу залежності похибки від числа ітерацій.
статья, добавлен 28.10.2016Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.
статья, добавлен 25.03.2016Розробка нового підходу для дослідження паралельності алгоритмів розв'язання матричних систем. Розгляд особливостей ланцюгового та централізованого способів передачі інформації, а також схем діагоналізації та розрізання розв'язання матричних систем.
статья, добавлен 25.10.2018- 92. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
автореферат, добавлен 29.07.2014 Обґрунтування варіаційного підходу до опису власних значень та до розв'язування лінійних та нелінійних багатопараметричних спектральних задач. Розробка необхідного програмного забезпечення та числові експерименти з розв'язування відомих модельних задач.
автореферат, добавлен 30.07.2015Викладення класу крайових задач для лінійних рівнянь з екстремальною граничною умовою. Дослідження матричної задачі Рімана на дійсній осі та побудова розв’язків таких крайових задач. Розроблення і обґрунтування методів наближеного розв’язання рівнянь.
автореферат, добавлен 10.08.2014Одержання умов збіжності, оцінок швидкості збіжності функціональних випадкових рядів у нормах просторів Орліча та Соболєва. Застосовність методу Фур'є до розв’язання крайової задачі для рівняння гіперболічного типу з випадковими початковими умовами.
автореферат, добавлен 23.11.2013Вивчення проблеми знаходження конструктивних умов існування та побудови алгоритмів знаходження розв'язків нетерових крайових задач для лінійних і слабконелінійних систем диференціальних рівнянь з імпульсним впливом. Побудова узагальненого оператора Гріна.
автореферат, добавлен 28.08.2015Розв’язання задач на складання рівнянь, в яких кількість невідомих перевищує кількість рівнянь системи, які розв’язуються за допомогою нерівностей, з цілочисловими невідомими та в яких потрібно знаходити найбільші і найменші значення деяких виразів.
лекция, добавлен 25.01.2014Вивчення застосування методу Фур'є до задач математичної фізики для гіперболічного рівняння. Дослідження оцінки розподілу супремуму розв'язання рівняння коливання струни та аналіз застосування отриманих результатів до моделювання розв'язання рівняння.
автореферат, добавлен 30.08.2014Встановлення існування та єдиності розв'язку оберненої задачі визначення залежного від часу коефіцієнта при похідній за часом в одновимірному параболічному рівнянні. Задача визначення невідомого коефіцієнта, коли умови перевизначення є нелокальними.
автореферат, добавлен 25.08.2015Виконання наочних зображень, що пояснюють зміст геометричних властивостей, закладених у самому зв'язку між даними і шуканими елементами простору, які використовуються для розв'язання конструктивних задач. Використання команд 3D моделювання системи КОМПАС.
статья, добавлен 19.02.2016