Нейронные сети

Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.

Подобные документы

  • Рассмотрение нейрокомпьютера как вычислительной системы с архитектурой MSIMD. Базовые архитектуры нейронных сетей. Правило коррекции по ошибке, обучение Больцмана и правило Хебба. Особенности программирования средств аппаратной поддержки нейровычислений.

    реферат, добавлен 02.03.2012

  • Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.

    статья, добавлен 30.05.2017

  • Компьютерные и телекоммуникационные сети. Общая структура телекоммуникационной сети. Различные типы сетей. Классификация услуг телекоммуникационной сети. Региональные и национальные операторы связи. Проблемы с надежностью передачи данных по сети.

    лекция, добавлен 15.02.2014

  • Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.

    книга, добавлен 18.01.2011

  • Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.

    статья, добавлен 02.04.2019

  • Классификация компьютерных сетей. Понятие и типология локальной сети. История возникновения и структура сети Internet. Понятие и характеристика популярных браузеров: Mozilla Firefox, Opera, Internet Explorer. Работа с MS Excel и объектом "Мой компьютер".

    контрольная работа, добавлен 03.05.2010

  • Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.

    статья, добавлен 17.03.2021

  • Сущность и устройство искусственных нейтронных сетей, их общая характеристика, назначение, принцип работы и составляющие базовые нелинейные элементы. Решение систем обыкновенных дифференциальных уравнений в нейросетевом базисе при помощи системы Simulink.

    контрольная работа, добавлен 12.12.2012

  • Распознавание символов по скелетному изображению, использование нейронной сети. Вычисление набора признаков скелета символа, его идентификации по результатам обучения нейронной сети. Устойчивость алгоритма к искажениям символов и параметрам шрифта.

    статья, добавлен 25.09.2012

  • Нейронные сети как распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Общая характеристика нейронной сети прогнозирования курса рубля, знакомство с основными особенностями.

    контрольная работа, добавлен 31.05.2013

  • Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.

    статья, добавлен 03.02.2021

  • Задачи, которые решают нейронные сети. Кластеризация и визуализация данных. Прогнозирование временных рядов и оценивание рисков. Иллюстрации применения технологий информационного моделирования. Нейросетевые обучающиеся машины. Аппроксимация данных.

    лекция, добавлен 08.02.2013

  • Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.

    статья, добавлен 29.07.2018

  • Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.

    статья, добавлен 28.10.2020

  • Рассматриваются алгоритмы обучения нейронной сети: градиентный спуск с постоянным шагом и метод сопряженных градиентов (алгоритм Флетчера-Ривса). Расчет значения минимизируемой целевой функции ошибки полученной на тестовой выборке после обучения.

    статья, добавлен 29.04.2018

  • Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.

    статья, добавлен 15.07.2020

  • Принципы построения и функционирования аппаратного и программного обеспечения элементов сети. Характеристика локальных и глобальных сетей Internet. Ресурсы Internet. Области применения электронной почты. Известные способы общения в сети (IRC, ICQ).

    реферат, добавлен 14.12.2012

  • Классификация компьютерных сетей и их особенности. Схема связи персональных компьютеров по телефонной линии. Структура и специфика функционирования сети Internet. Электронная почта, проект "WWW" и информационно-поисковые системы как сервисы Интернета.

    презентация, добавлен 19.10.2015

  • Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.

    дипломная работа, добавлен 10.12.2019

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.

    статья, добавлен 19.06.2018

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

  • Примеры задач компьютерного зрения. Методы машинного обучения. Модели нейронных сетей для задачи мульти-классификации и детектирования. Порядок создания системы детектирования и сегментирования предметов одежды на фото. Нейронные сети, модель SSD300.

    статья, добавлен 18.07.2020

  • Понятие, виды и функции компьютерных сетей. Характеристика принципов работы локальной и территориально-распределенной сети. Особенности построения компьютерной сети и работы отдельных её составляющих (топология, аппаратное и программное обеспечение).

    доклад, добавлен 25.01.2012

  • Решение задач классификации бинарных входных векторов с использованием искусственной нейронной сети Хэмминга. Расчет матрицы весовых коэффициентов нейронов первого слоя. Сигналы нейронной сети Хэмминга, получаемые на протяжении полного цикла расчета.

    статья, добавлен 12.06.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.