Описание аксиоматического метода

Аксиоматический метод построения научной теории. Выделение понятий, формулирование аксиомы. Выведение теоремы и других понятий логическим путём. Пять "общих понятий" Евклида, причины его критики. Модель планиметрии Лобачевского на евклидовой плоскости.

Подобные документы

  • Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.

    монография, добавлен 03.07.2014

  • Развитие математического метода. Аксиомы и методы доказательства. Преобразование математики в период От Евклида до начала 19 в. Появление неевклидовой геометрии. Современная математика. Тесная взаимосвязь данной науки и реального физического мира.

    реферат, добавлен 20.04.2010

  • Определение секущей равного наклона к двум данным прямым. Доказывание существования секущих равного наклона. Признаки параллельности двух прямых, их свойства. Формулирование одной из теорем планиметрии - теоремы о секущих, ее доказательство и следствие.

    реферат, добавлен 28.03.2014

  • Рассмотрение основной задачи геометрии чисел, а также теоремы Минковского с её доказательством. Объяснение таких понятий геометрии чисел, как решётки и критические решётки. В работе приводится, так называемая, "неоднородная задача" геометрии чисел.

    курсовая работа, добавлен 22.04.2011

  • Интерпретация функции двух переменных на основе понятий дифференциального исчисления. Частные производные и дифференциал. Понятие производной по направлению. Градиент функции трех переменных. Уравнение касательной плоскости и нормали к поверхности.

    реферат, добавлен 04.05.2015

  • Сущность метода неоконченных предложений, этапы анализа полученных данных. Разработка метода парных сравнений и сферы его использования. Дихотомические пары понятий, которые важны для изучения связи. Анализ взаимосвязи признаков и коэффициентов связи.

    курсовая работа, добавлен 22.01.2013

  • История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.

    реферат, добавлен 08.05.2012

  • Изучение понятий теории игр. Порядок составления платежной матрицы. Смешанное расширение матричной игры. Доминируемые стратегии в теории игр. Процесс создания математической игровой модели. Матричная игра в чистых стратегиях, ее взаимосвязь с природой.

    контрольная работа, добавлен 15.02.2015

  • Геометрическая теория, основанная на системе аксиом, впервые изложенная в "Началах" математика Евклида (III век до н.э.). Аксиома как "фундамент" для построения доказательств утверждений или теорем. Научные исследования и педагогические заслуги Евклида.

    презентация, добавлен 21.02.2017

  • Особенности и способы построения перспективных проекций на плоскости. Исходные ортогональные проекции и необходимые построения. Построение перспективы второй окружности, расположенной в параллельной плоскости. Основы построения теней в перспективе.

    курсовая работа, добавлен 25.04.2017

  • Формулировка теоремы Ферма из теории алгебраических чисел. Доказательство данной теоремы методом "от противного": сначала предполагается выполнение основного равенства теоремы, а затем показывается его нарушение, приводящее к выполнению утверждения.

    статья, добавлен 27.09.2012

  • Расширение основных геометрических понятий о симметрии на примере кристаллов. Исследование простых и сложных геометрических фигур и их составляющих. Изучение общих признаков многогранников, использование геометрических формул. Форма кристаллов.

    реферат, добавлен 04.02.2015

  • Влияние К.Ф. Гаусса на Лобачевского во время обучения в университете. Получение степени магистра и избрание на должность ректора. Математические достижения великого ученого. Характеристика трудов и книг Лобачевского в области алгебры и геометрии.

    биография, добавлен 07.05.2011

  • Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.

    контрольная работа, добавлен 13.04.2012

  • Комплексная форма интеграла Фурье. Оригинал и изображение в преобразовании Лапласа. Доказывание теоремы дифференцирования оригинала методом математической индукции. Применение элементарных методов при разложении правильной дроби на сумму простейших.

    курсовая работа, добавлен 25.03.2014

  • Общая характеристика теоремы Больцеана-Коши. Знакомство с особенностями метода равномерного поиска и метода бисекции. Анализ основных проблем поиска интервалов, содержащих корень, с заданной степенью точности. Рассмотрение способов локализации отрезков.

    лабораторная работа, добавлен 02.10.2013

  • Построение цепочки силлогизмов для создания доказательства, утверждающего истинность теоремы. Классификация теорем по логической структуре, характеристика необходимых и достаточных условий. Существующие системы аксиом, предъявляемые к ним требования.

    презентация, добавлен 15.02.2012

  • Развитие методов научного исследования проблем динамики твердого тела. Значение труда Н.И. Лобачевского "Условные уравнения для движения и положение главных осей в твердой системе" для возможности эффективного применения геометрического метода в механике.

    статья, добавлен 26.04.2019

  • Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.

    методичка, добавлен 24.03.2015

  • История возникновения понятий шара и шаровой (сферической) поверхности, их определение как геометрических фигур. Рассмотрение уравнения сферы и основных геометрических формул (площади сферы, объема шара, площади сегмента сферы). Теоремы и доказательства.

    реферат, добавлен 02.04.2012

  • Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.

    статья, добавлен 26.04.2019

  • Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.

    контрольная работа, добавлен 14.09.2010

  • Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.

    шпаргалка, добавлен 18.03.2013

  • Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.

    курсовая работа, добавлен 22.04.2011

  • Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.

    реферат, добавлен 27.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.