Использование нейронных сетей для прогнозирования и торговли на фондовом рынке
Разработка новых методов решения проблемы предсказывания (определения) цен акций на фондовом рынке с помощью технологии датамайнинга и машинного обучения, а именно нейронных сетей как инструмента имитации агента, торгующего на фондовом или другом рынке.
Подобные документы
Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Анализ существующих решений в прогнозировании котировок. Программные комплексы для автоматической торговли на основе нейронных сетей. Составление плана проектирования программного комплекса. Разработка резюме проектирования остальных обработчиков.
контрольная работа, добавлен 30.08.2016- 4. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Рассмотрение методов прогнозирования нейронных сетей. Решение задачи обзора методов оконного прогнозирования на объеме страховых взносов. Изучение методов одношагового, многошагового прогнозирования. Применение метода окон для генерации обучающей выборки.
статья, добавлен 24.03.2018Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.
методичка, добавлен 03.07.2017Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Паттерны фондовых индексов. Предсказание цен на фондовом рынке. Два базовых алгоритма распознавания паттернов: совпадение по правилу и совпадение по шаблону. Подход распознавания паттернов индексов фондовых бирж на основе искусственных нейронных сетей.
статья, добавлен 26.05.2017Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.
статья, добавлен 12.07.2021Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Нейронная сеть – система связанных и взаимодействующих друг с другом искусственных нейронов. В статье проведен анализ алгоритмов обучения нейронных сетей. Приведены последовательность действий при обучении этими алгоритмами, их достоинства и недостатки.
статья, добавлен 23.01.2021Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).
курсовая работа, добавлен 04.04.2009Изучение принципа работы сверточных нейронных сетей. Исследование современных методов определения направления взгляда. Выбор технологий и библиотек необходимых для разработки приложения. Разработка веб-приложения. Основные типы слоев и методы оптимизации.
дипломная работа, добавлен 27.08.2020Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Методы формирования структуры нейронных сетей и их обучения. Принципы автоматического определения способа и параметров формирования общего решения в коллективе. Использование полученных результатов для решения задач моделирования и прогнозирования.
статья, добавлен 19.01.2018Возможности применения технологии блокчейн для повышения эффективности работы методов машинного обучения. Тенденции практического применения нейронных сетей и технологии блокчейн. Формирование обучающих выборок, сбор данных распределенными системами.
статья, добавлен 10.05.2022