Закон больших чисел от Бернулли до Маркова
Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.
Подобные документы
Изучение основных законов распределения дискретных случайных величин. Применение на практике основных расчетов и теорий биномиального распределения. Сущность закона распределения случайных величин, формулы Бернулли и ее применение в теории вероятности.
презентация, добавлен 18.11.2012Методика определения и оценки вероятности попадания студенту "счастливого" билета на экзамене. Анализ вероятности того, что среди 12 новорожденных будет 10 девочек. Разработка закона распределения случайной величины и вычисление математического ожидания.
контрольная работа, добавлен 19.03.2015Расчет задач по теории вероятности с разными условиями наступления тех или иных событий по формуле Бернулли. Исчисление вероятности наступления конкретного события. Исчисление вероятности конкретной последовательности наступления определенных событий.
контрольная работа, добавлен 23.01.2014- 104. Случайные события
Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
учебное пособие, добавлен 12.03.2015 Примеры решений задач по теории вероятностей. Вероятность попадания людей в ту или иную подгруппу. Вероятность выигрыша ставки. Закон распределения случайной величины. Временные интервалы и критерий согласия Пирсона. Выборочные коэффициенты корреляции.
контрольная работа, добавлен 17.03.2015Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.
лекция, добавлен 30.11.2016- 107. Теория вероятностей
Определение закона распределения случайной величины. Нахождение плотности распределения, математического ожидания, дисперсии и среднего квадратического отклонения. Построение графиков дифференциальной и интегральной функций. Анализ вероятности события.
контрольная работа, добавлен 14.12.2015 - 108. Теория вероятностей
Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.
учебное пособие, добавлен 25.12.2013 История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.
статья, добавлен 24.08.2020- 110. Теория вероятности
Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.
задача, добавлен 20.11.2015 Изучение основ комбинаторики. Классическое определение вероятности. Свойства математического ожидания. Понятие о критериях согласия. Виды уравнений регрессии. Методы анализа статистических данных. Применение закона распределения случайной величины.
учебное пособие, добавлен 18.10.2014- 112. Анализ вероятности
Порядок и принципы построения распределения вероятности занятия линий в пучке из V-линий в соответствии с распределениями Бернулли, Пуассона и Эрланга. Расчет математического ожидания числа занятых линий, их дисперсии и среднеквадратического отклонения.
задача, добавлен 10.12.2015 Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.
статья, добавлен 26.04.2019Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.
реферат, добавлен 10.11.2014- 115. Теория вероятностей
Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.
задача, добавлен 28.02.2015 История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.
реферат, добавлен 08.06.2017Классическая схема случаев - испытание, где число элементарных исходов конечно, и все они несовместны и равновозможны. Правила суммы, произведения. Характеристика схемы испытаний Бернулли, интегральной теоремы Муавра-Лапласа, схемы Пуассона, цепи Маркова.
реферат, добавлен 25.02.2011Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.
статья, добавлен 03.03.2018Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.
контрольная работа, добавлен 06.11.2012Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.
реферат, добавлен 27.02.2012Определение количества некачественных и дефектных товаров в партии согласно теории вероятности, расчет математического ожидания и среднего квадратичного отклонения. Анализ дисперсии распределения выборки, понятие статистической игры и критериев Байеса.
контрольная работа, добавлен 19.02.2015Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.
контрольная работа, добавлен 08.12.2011- 124. Теория вероятностей
Изучение основных формул комбинаторики. Анализ примеров абсолютно непрерывных распределений. Характеристика теоремы Пуассона для схемы Бернулли. Рассмотрение особенностей использования формулы свёртки. Изучение основных свойств коэффициента корреляции.
учебное пособие, добавлен 28.12.2013 Основные понятия теории вероятностей, пространство случайных и элементарных событий. Операции над событиями (сумма, разность, произведение) и свойства операций. Сущность алгебры и сигма-алгебры событий, аксиоматическое построение теории вероятностей.
реферат, добавлен 25.02.2011