Топология замкнутых маршрутов
Замкнутый маршрут как топологическая характеристика некоторых классических поверхностей (лист Мебиуса, действительная проективная плоскость, бутылка Клейна, тор), вложенных в действительное пространство трех измерений. Операции с этими поверхностями.
Подобные документы
Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.
шпаргалка, добавлен 23.01.2011Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.
лекция, добавлен 18.03.2015Свойства развертки поверхностей. Способы построения развертки многогранных поверхностей. Применение способа треугольника при построении развертки пирамиды. Развертка призмы способами нормального сечения и раскатки. Коническая и цилиндрическая поверхности.
реферат, добавлен 28.12.2011Определение поверхности первого порядка. Уравнение плоскости по точке и нормальному вектору. Математическое изображение ориентации объектов в пространстве: уравнение линии, взаимное расположение плоскостей и двух прямых, векторное равенство прямой.
лекция, добавлен 29.09.2013Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.
презентация, добавлен 29.10.2017Изучение линейных однородных уравнений с постоянными коэффициентами (случай простых и кратных корней), их фазовая плоскость. Расчет показателей нормальной линейной однородной и линейной неоднородной системы с постоянными коэффициентами в математике.
курсовая работа, добавлен 04.01.2016Функциональные преобразования результатов измерений. Основы применения мультипликативной поправки. Обработка экспериментальных данных при изучении зависимости. Анализ доверительного интервала. Проверка равнорассеянности результатов измерений в сериях.
курсовая работа, добавлен 06.04.2015Проецирование прямой на плоскость. Прямые частного положения. Использование конкурирующих точек. Определение видимости ребер пирамиды, натуральной величины отрезка и фигуры. Способы преобразования чертежа. Сущность метода плоскопараллельного переноса.
презентация, добавлен 09.03.2015Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.
курсовая работа, добавлен 30.07.2017Сущность задачи на нахождение геометрического места точек пространства. Серединная плоскость скрещивающихся прямых. Гиперболический параболоид как поверхность второго порядка. Окружность и сфера Аполлония. Метод в стереометрических задачах на построение.
реферат, добавлен 24.12.2013Расчет угла между прямой и плоскостью. Определение уравнения по геометрическим свойствам поверхности. Вычисление свойств поверхности по виду уравнения. Функции сферы, эллипсоида, параболоида, гиперболоида, цилиндрической и конической поверхности.
лекция, добавлен 29.09.2013Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
презентация, добавлен 13.04.2012Погрешность средств и результата измерений. Инструментальные и методические ошибки. Точность методов и результатов измерений Классификация погрешностей в математической статистике. Основные и дополнительные, статические и динамические погрешности.
реферат, добавлен 21.04.2014- 89. Шар
Сфера: понятие, радиус, диаметр, центр, уравнение. Большой круг шара. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере: теоремы и точка касания. Формула для вычисления площади сферы. Шаровой сегмент и слой: основание и высота.
конспект урока, добавлен 30.03.2016 Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.
курс лекций, добавлен 06.11.2009Взаимное расположение прямой и плоскости в декартовой системе координат. Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Свойства нормального и направляющего векторов плоскости в пространстве.
контрольная работа, добавлен 01.03.2017Описание методов проекций (центральные и параллельные проекции). Проецирование методом Монжа. Взаимное положение прямых в пространстве: пересекающиеся, параллельные и скрещенные прямые. Способы задания плоскости на чертеже. Прямая и точка в плоскости.
курсовая работа, добавлен 15.12.2010Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.
методичка, добавлен 24.03.2015Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.
реферат, добавлен 20.02.2017Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.
реферат, добавлен 29.04.2018Рассмотрение аппроксимации трех классических в теории трещин случаев на основе ортогональных полиномов Чебышева. Аналитическая модель полей напряжений в вершине трещины, возникающей в периодическом и квазипериодическом композитах. Трещина Гриффитса.
статья, добавлен 28.09.2012Описание свойства трёхмерности классических задач управления в смысле теоремы об ограниченности вложенности суперпозиций. Теорема о трёхмерности пространства с упорядоченными друг относительно друга осями. Обобщение при возмущениях (в различных задачах).
статья, добавлен 26.04.2019Случайная величина. Генеральная совокупность и выборка. Результат измерения. Доверительный интервал. Погрешности косвенных измерений. Алгоритм обработки данных косвенных измерений выборочным методом. Задача регрессии и метод наименьших квадратов.
методичка, добавлен 24.05.2012Взаимное расположение точек и прямых в пространстве и на плоскости. Уравнение прямой по точке и вектору нормали, заданной угловым коэффициентом. Параметрические и канонические уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки.
курсовая работа, добавлен 08.12.2015