Некоторые нелинейные методы решения оптимизационных задач
Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
Подобные документы
Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.
статья, добавлен 31.05.2013Определение критериев выпуклости и вогнутости функций. Задачи безусловной оптимизации и необходимые условия оптимальности. Рассмотрение задачи с ограничениями-неравенствами. Рассмотрение сущности множителей Лагранжа и условий дополняющей нежесткости.
лекция, добавлен 06.09.2017- 103. В мире процентов
История процента и знака процента. Формулы для решения задач на проценты. Основные типы задач на проценты, методы и примеры их решения. Процент в повседневной жизни. Подборка задач в помощь учащимся 9-ых классов для подготовки к экзамену по математике.
творческая работа, добавлен 03.05.2019 Изучение особенностей проектирования современных технических систем. Характеристика использования математического моделирования, программного обеспечения персональных компьютеров, математического программирования для решения оптимизационных задач.
курсовая работа, добавлен 22.11.2018Пример решения задачи линейного программирования с ограничениями-равенствами. Решение матрицы системы линейных уравнений. Вариант задачи линейного программирования в общем случае (при произвольном числе свободных переменных), применение симплекс-метода.
контрольная работа, добавлен 25.10.2009Описание вопроса, откуда берут своё начало технические системы и методы решения изобретательских задач, анализ дальнейшего их развития и применения в различных сферах. Описание нескольких примеров с задачами данного типа и вариантами их решения.
статья, добавлен 28.02.2019Построение математических моделей физических процессов и явлений. Применение вариационных методов для решения задач со свободными границами. Разработка численного алгоритма решения для двумерной задачи с неизвестной границей в прямоугольной области.
статья, добавлен 30.05.2017Методика постановки математических задач для поиска оптимального решения. Специфика использования геометрического и динамического программирования для решения заданий оптимизации многостадийных процессов. Принципы построения многоугольника решений.
реферат, добавлен 22.01.2014Особенности геометрического решения задач линейного программирования и решения симплекс-методом. Рассмотрение метода искусственного базиса. Основные правила выпуклого программирования. Условия Куна-Таккера. Применение метода возможных направлений.
методичка, добавлен 13.09.2015Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013- 111. Нахождение максимальной прибыли от реализации всей продукции симплекс-методом и графическим способом
Методы решения задач линейного программирования. Этапы нахождения оптимального решения, его постоптимального анализа. Проблемы построения электронных математических моделей линейного программирования и их оптимизации с помощью надстройки "Поиск решения".
курсовая работа, добавлен 23.10.2011 Многокритериальные решения для задач оптимизации в строительстве. Метод поиска оптимальных решений. Рассмотрение возрастающих и убывающих частей целевой функции и оценка решения с помощью коэффициента эффективности. Приоритеты по каждому критерию.
статья, добавлен 30.04.2018Анализ аксиом о взаимном расположении точек, прямых и плоскостей в пространстве. Характеристика прямоугольной системы координат в промежутке. Свойства аффинных и метрических преобразований в стереометрии. Суть векторного решения стереометрических задач.
курсовая работа, добавлен 18.10.2015Характеристика основных комбинаций многогранников с цилиндром, конусом и шаром. Главные правила при решении задач на комбинации фигур. Особенности факторов связанных с вписанными и описанными сферами. Формулы для расчета площади поверхности и объема.
реферат, добавлен 21.05.2013Выявление методов нахождения площадей плоских фигур в зависимости от заданных условий. Выделение типологии задач на нахождение площадей и обоснование применения метода решения к ним. Разработка задачи прикладного характера и выполнение их решения.
курсовая работа, добавлен 19.09.2018Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.
задача, добавлен 05.05.2015Математическая постановка задач оптимального управления. Понятие функционала, его свойства и виды: Лагранжа, Майера, Больца. Понятие оптимальной ширины полосы пропускания системы. Основы вариационного исчисления. Условия относительного экстремума.
курс лекций, добавлен 19.09.2017Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.
курсовая работа, добавлен 23.08.2014Ознакомление с задачами, решаемыми с помощью вспомогательных вариационных задач. Рассмотрение процесса решения задачи о критических оборотах вала. Исследование и анализ зависимости параметра квадратичной вариационной задачи от числа краевых условий.
статья, добавлен 26.04.2019Исследование линейно-квадратичной задачи управления процессом колебаний мембраны. Применение метода множителей Лагранжа. Получение системы интегро-дифференциальных уравнений Риккати с частными производными. Определение необходимых условий оптимальности.
статья, добавлен 28.08.2016Общие аксиомы конструктивной геометрии, методы решения элементарных геометрических задач на построение на плоскости. Методы геометрических преобразований: симметрия, вращение, гомотетия, инверсия. Построение отрезков, заданных простейшими формулами.
курсовая работа, добавлен 12.01.2013Распространение, характеристика и специфика метода улучшения плана для модификаций транспортных задач. Объединение оптимальных решений двух одномерных задач. Квадратичные зависимости по перевозкам продукта из пунктов потребления в пункты производства.
автореферат, добавлен 31.07.2018Характеристика решения первой краевой задачи конечно-разностным и методом прогонки. Их особенности, описание и специфика применения к конкретному случаю. Код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.
курсовая работа, добавлен 01.12.2009Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.
контрольная работа, добавлен 12.12.2012