Характеристика теории графов
Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.
Подобные документы
Особенность изображения графов на рисунках. Описание организации структур данных. Характеристика простого и сложного орграфа. Отображение алгоритма поиска центра совокупности непустого множества вершин. Анализ исследования исходного кода программы.
контрольная работа, добавлен 07.01.2016Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.
курсовая работа, добавлен 04.12.2023Ознакомление с формульным выражением симметричной квадратной матрицы. Определение свойств матриц смежности и инцидентности. Расчеты ориентированного мультиграфа при нулевой, либо линейной комбинации строк. Обзор теоремы ориентированного псевдографа.
лекция, добавлен 18.10.2013- 29. Теория графов
Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.
задача, добавлен 11.09.2012 Пропускные способности дуг и емкости вершин. Решение задачи о заполнении вершин графа из одного источника с условием "жадности вершин". Длина наибольшей ветви ордерева. Пропускные способности всех дуг и мощность источника. Заполнение графа подключением.
статья, добавлен 12.01.2018История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.
курсовая работа, добавлен 14.01.2011Определение кратчайших путей от вершины до остальных вершин графа, используя алгоритмы Дейкстры и Беллмана. Определение кратчайших путей между всеми парами вершин графа с применением алгоритма Флойда. Программирование алгоритма дискретной математики.
курсовая работа, добавлен 12.11.2017- 33. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 Понятие и определение графа, геометрическое изображение его вершин и элементов. Сущность маршрута в графе, простой и замкнутый циклы. Доказательство алгоритма Беллмана, построение блок-схемы нахождения расстояния от источника до всех вершин графа.
курсовая работа, добавлен 24.04.2011Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.
курсовая работа, добавлен 26.11.2014Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.
учебное пособие, добавлен 15.10.2016- 37. Раскраска графов
Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.
доклад, добавлен 29.12.2014 Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.
учебное пособие, добавлен 15.10.2016Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.
курс лекций, добавлен 01.04.2016Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.
дипломная работа, добавлен 26.02.2020Мультиграф, в котором не допускаются петли, но пары вершин могут соединяться более чем одним ребром. Теоретико-множественное представление графов. Вид двоичного дерева поиска, в котором ключами являются латинские символы, упорядоченные по алфавиту.
курсовая работа, добавлен 15.01.2014- 42. Теория графов
Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.
контрольная работа, добавлен 18.12.2015 Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
курсовая работа, добавлен 06.07.2014Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.
презентация, добавлен 27.01.2017Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.
реферат, добавлен 14.12.2015Сущность и функции графа. Связь между помеченными и непомеченными графами. Связность любой пары вершин графа простой цепью. Компонента графа. Метрические характеристики графа. Теорема Д. Кенига. Ориентированный, неориентированный помеченный граф (орграф).
презентация, добавлен 15.09.2017- 47. Теория множеств
Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.
методичка, добавлен 29.09.2017 Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.
лекция, добавлен 18.10.2013Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.
контрольная работа, добавлен 13.04.2012Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.
курсовая работа, добавлен 22.06.2014