Математические методы в оценке. Построение регрессионных моделей
Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.
Подобные документы
Определение линейного коэффициента парной корреляции, уравнение линейной регрессии. Построение степенной модели путем логарифмирования частей уравнения. Построение гиперболической модели, коэффициент детерминации и средняя относительная ошибка.
контрольная работа, добавлен 10.06.2009Парная регрессия и корреляция. Типы кривых, используемые при количественной оценке связей между двумя переменными. Построенные модели по индексу детерминации и средней ошибке аппроксимации. Отбор факторов при построении уравнения множественной регрессии.
курс лекций, добавлен 10.04.2010Расчет параметров уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии. Оценка средней ошибки аппроксимации качества уравнений. Оценка статистической надежности результатов моделирования.
контрольная работа, добавлен 16.05.2016Построение статистической модели зависимости стоимости квартиры от размера ее площади. Расчет параметров линейного уравнения множественной регрессии. Сравнительная оценка влияния факторов на результативный показатель с помощью коэффициентов эластичности.
контрольная работа, добавлен 06.04.2015Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015Показательный тренд. Построение регрессии. Дисперсионный анализ для линейной регрессии. Доверительные интервалы для оцененных параметров. Критерий Фишера значимости всей регрессии. Колеблемость признака. Моделирование сезонности ВВП. Индексный анализ.
курсовая работа, добавлен 21.08.2008Знакомство со способами построения экспериментальных точек в декартовой системе координат. Общая характеристика ключевых этапов и проблем расчета коэффициентов парной корреляции. Рассмотрение основных особенностей линейной, а также нелинейной регрессии.
контрольная работа, добавлен 02.11.2020Классы нелинейных регрессий. Корреляция для нелинейной регрессии, последовательность теста Бокса-Кокса. Коэффициент эластичности как характеристика силы связи фактора с результатом. Построение уравнения линейной регрессии и квадратичной зависимости.
контрольная работа, добавлен 28.07.2013Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.
контрольная работа, добавлен 14.11.2011- 85. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Формулировка и доказательство теоремы Гаусса-Маркова. Анализ точности определения оценок коэффициентов регрессии. Понятие коэффициента детерминации. Построение доверительных интервалов по линейному уравнению регрессии и расчёт коэффициента вариации.
контрольная работа, добавлен 28.07.2013Оценка статистической значимости уравнения регрессии и ее параметров, с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции, установление мультиколлинеарных факторов. Результаты, оформление аналитической записки.
контрольная работа, добавлен 10.03.2011Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.
контрольная работа, добавлен 10.07.2016Изучение влияния факторов на производительность труда. Построение уравнения регрессии и распределения. Определение значимости коэффициентов парной корреляции. Проверка случайности колебаний уровней остаточной последовательности. Оценка точности модели.
лабораторная работа, добавлен 04.10.2016Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.
презентация, добавлен 12.07.2015Оценка статистической значимости параметров регрессии. Прогнозирование чистого дохода и расчет доверительного интервала для коэффициентов регрессии и математического ожидания. Вычисление коэффициента детерминации, анализ наличия автокорреляции остатков.
контрольная работа, добавлен 20.05.2012Построение модели парной линейной регрессии, описывающей зависимость среднедушевых денежных расходов за месяц от среднемесячной начисленной заработной платы на человека. Расчет коэффициентов корреляции и детерминации. Анализ средней ошибки аппроксимации.
контрольная работа, добавлен 19.05.2012Расчет уравнения парной линейной регрессии зависимости прибыли от производительности труда. Особенность вычисления обобщающего коэффициента эластичности. Калькуляция средней ошибки аппроксимации. Характеристика показателей корреляции и детерминации.
контрольная работа, добавлен 14.06.2015Построение поля и расчёт линейного коэффициента корреляции. Построение линейного уравнения множественной регрессии и расчёт коэффициента множественной детерминации. Определение коэффициента автокорреляции первого порядка и построение уравнения тренда.
контрольная работа, добавлен 04.02.2013Характеристика основных показателей качества параметров регрессии. Порядок работы при проверке значимости коэффициента. Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Аспекты предсказания среднего значения зависимой переменной.
курс лекций, добавлен 11.06.2014Методика построения точечной диаграммы и линии регрессии в программном приложении Microsoft Excel. Определение стандартного отклонения выборки и коэффициента корреляции. Порядок выполнения проверки соответствия остатков нормальному распределению.
лабораторная работа, добавлен 02.01.2022Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.
задача, добавлен 27.09.2016Построение поля корреляции, формулировка гипотезы о возможной форме и направлении связи. Расчет параметров парной линейной, степенной и линейно-логарифмической функций, а также параболы второго порядка. Построение уравнения регрессии и методы его решения.
лабораторная работа, добавлен 25.03.2012Определение коэффициентов линейного уравнения регрессии. Определение числа индивидуальных значений признака. Корреляционная зависимость и уравнение регрессии. Построение системы нормальных уравнений с использованием метода наименьших квадратов.
реферат, добавлен 24.12.2011Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.
курсовая работа, добавлен 04.01.2018