Линейная и векторная алгебра
Линейная зависимость векторов. Уравнение прямой, проходящей через две точки. Общее уравнение кривых второго порядка. Каноническое уравнение гиперболы и эллипса. Квадратичные формы переменных. Тригонометрическая форма комплексного числа, Bзвлечение корня.
Подобные документы
Определение координат и модулей векторов, угла между ребрами AB и AC, площади грани ABC, объема пирамиды, угла между прямой AD и плоскостью ABC. Решение уравнения высоты фигуры через вершину A и уравнения прямой, проходящей через определенные точки.
контрольная работа, добавлен 16.11.2011- 27. Плоские кривые
История изучения плоских кривых. Особенности формы кривой и способов ее образования. Классификация плоских кривых. Канонические уравнения эллипса, гиперболы и параболы, свойства кривых, изучаемые в 9–11 классах. Цели и задачи факультативных занятий.
дипломная работа, добавлен 22.04.2011 Особенность канонических уравнений линий второго порядка. Характеристика эллипса, параболы и гиперболы. Суть отношений расстояний от любой точки до фокуса. Рассмотрение полюса полярной системы координат. Анализ способа использования энергии Солнца.
презентация, добавлен 01.03.2015Параллельный перенос системы координат. Общее уравнение кривой второго порядка. График квадратного трехчлена. Вычисление линейного преобразования, заданного матрицей. Установление связи между декартовыми и полярными координатами точки, примеры расчета.
лекция, добавлен 10.07.2015Решение задач с экономическим содержанием, применяя уравнения линейной зависимости или уравнение кривых 2-го порядка. Составление матрицы для заданной квадратичной формы, ее знакоопределенность. Разложение свободных векторов по базису заданной системы.
контрольная работа, добавлен 16.10.2014Уравнение плоскости, проходящей через точку. Нормальный вектор плоскости. Исследование общего уравнения плоскости. Уравнение плоскости "в отрезках". Условия параллельности и перпендикулярности двух плоскостей. Нахождение расстояния от точки до плоскости.
лекция, добавлен 09.07.2015История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей.
учебное пособие, добавлен 11.02.2015Характеристика особенностей линий второго порядка - плоских линий прямоугольных координат, точки которых удовлетворяют алгебраическое уравнение второй степени. Изучение формул преобразования координат при параллельном переносе и повороте на угол.
презентация, добавлен 17.11.2015Решение задач по линейной алгебре, тензорному исчислению, системам дифференциальных уравнений и теории устойчивости. Линейная зависимость векторов. Сумма и перечисление подространств. Ортогонализация по Граму-Шмидту. Матрица сопряженного оператора.
учебное пособие, добавлен 03.10.2012Принцип определения уравнения прямой. Формула выражения линейной функции: расчет и построение прямых. Нахождение углового коэффициента и приведение уравнения к общему виду. Построение параллельной и перпендикулярной прямых, их угловой коэффициент.
практическая работа, добавлен 03.11.2008Матрица коэффициентов при неизвестных. Вычисление определителя и алгебраических дополнений. Скалярное произведение векторов. Уравнение прямой проходящей через точки. Разложение числителя и знаменателя дроби на множители. Нахождение производных функций.
контрольная работа, добавлен 25.03.2014Понятия и свойства эллипса, его полуосей. Характеристика степени вытянутости – эксцентриситет. Центр симметрии эллипса. Перпендикулярность нормальной плоскости и касательной прямой. Расчет радиус-вектора и векторного уравнения линии в пространстве.
задача, добавлен 18.05.2015Сущность векторной и скалярной величины. Линейные операции над векторами. Декартовы прямоугольные координаты в пространстве. Координаты векторов. Деление отрезка в заданном отношении. Направляющие косинусы. Кривые второго порядка. Уравнение фигуры.
курсовая работа, добавлен 17.01.2011Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.
методичка, добавлен 09.04.2012- 41. Матричный анализ
Вычисление элементов матрицы суммы. Определитель третьего порядка и правило треугольников. Решение системы линейных уравнений методом Гаусса. Косинус угла между векторами. Уравнение плоскости, проходящей через точку. Объем тетраэдра с заданными вершинами.
контрольная работа, добавлен 30.09.2013 Понятие дифференциальных уравнений первого порядка. Частный интеграл как общее и частное решение уравнения, записанное в неявной форме; задача Коши. Уравнение показательного роста. Дифференциальное уравнение закона радиоактивного распада Резерфорда.
реферат, добавлен 22.11.2013Исследование линейного дифференциального однородного уравнения второго порядка с произвольными коэффициентами с применением алгебраических преобразований. Изучение меры произвольности этих коэффициентов и методов безусловного решения таких уравнений.
творческая работа, добавлен 24.03.2011Кривые второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений, исследование формы и параметры: полуоси, фокусное расстояние, эксцентриситет. Оптическое свойство кривых и исследование неполного уравнения кривой второго порядка.
курс лекций, добавлен 26.12.2010- 45. Линейная алгебра
Системы линейных уравнений и матрицы. Действия с комплексными числами. Смежные классы и теорема Лангранжа. Тригонометрическая форма комплексного числа. Понятия дискриминант и результант. Многочлены и ряды от переменной. Описание кольца степенных рядов.
курс лекций, добавлен 28.12.2013 - 46. Линейная алгебра
Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.
реферат, добавлен 30.05.2022 Уравнение прямой с направляющим и нормальным вектором. Кривые второго порядка, полярная система координат. Определение терминов "гипербола", "парабола" и "эллипс". Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.
презентация, добавлен 21.09.2017Сущность уравнения прямой в пространстве как результат пересечения двух плоскостей. Рассмотрение нормального вектора плоскости и уравнения координатных плоскостей. Составление канонического уравнения прямой. Векторное параметрическое уравнение прямой.
контрольная работа, добавлен 13.04.2016Исследование формы данной поверхности методом сечений и построение сечения. Анализ кривой второго порядка. Нахождение фокусов, директрис, эксцентриситета и асимптот данной кривой второго порядка. Вывод уравнения осей канонической системы их координат.
курсовая работа, добавлен 30.10.2010- 50. Линейная алгебра
Изучение формул вычисления определителей второго и третьего порядков. Применение методов Крамера и Гаусса для решения систем линейных уравнений. Аналитическая геометрия на плоскости и в пространстве. Представление комплексных чисел и операции над ними.
тест, добавлен 06.09.2017