Парная регрессия и корреляция
Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.
Подобные документы
Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.
курсовая работа, добавлен 19.06.2015Выборочный метод и его основные понятия. Эмпирическая функция распределения и ее свойства. Проверка статистических гипотез, область их принятия, элементы теории корреляции и выборочные уравнения регрессии. Характеристика цепей Маркова и матрица перехода.
реферат, добавлен 25.02.2011Определение и проверка значения коэффициентов уравнения регрессии. Число степеней свободы в дисперсии адекватности. Получение уравнения регрессии 1 и 2 порядка в результате планирования и постановки эксперимента с учетом математических преобразований.
курсовая работа, добавлен 30.05.2018Расчет числовых характеристик выборочного распределения. Построение вариационного ряда и расчёты с использование электронных таблиц. Задача практического применения дисперсного анализа, парной линейной и нелинейной, а так же множественной регрессии.
контрольная работа, добавлен 11.04.2016Статистическое описание и выборочные характеристики двумерного случайного вектора. Построение диаграммы рассеяния. Однофакторный дисперсионный анализ. Определение линейного контраста и выборочной линейной регрессии. Расчет границ доверительного интервала.
контрольная работа, добавлен 16.10.2017Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".
статья, добавлен 03.11.2015Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.
статья, добавлен 24.02.2019Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.
практическая работа, добавлен 28.03.2020Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.
краткое изложение, добавлен 22.05.2010Коммерческий банк: понятие, сущность, функции. Теоретические аспекты построения статистической модели. Проявление мультиколлинеарности. Проверка уравнения регрессии на значимость. Построение модели зависимости прибыли банков от значимых факторов.
курсовая работа, добавлен 26.05.2013Многомерные совокупности. Методы обработки матрицы. Оценки математического ожидания. Виды зависимостей между величинами: функциональная и статистическая. Корреляционная зависимость. Оценка корреляционного момента. Выбор вида уравнения регрессии.
контрольная работа, добавлен 29.11.2011Определение математического ожидания, дисперсии, функции распределения, вероятности событий, ошибок измерений. Построение эмпирической функции распределения. Статистическая проверка гипотезы о нормальном распределении. Оценка коэффициента корреляции.
контрольная работа, добавлен 13.05.2014Рассмотрение метода взвешенных наименьших квадратов. Исследование случая парной регрессии. Нарушение гомоскедастичности и наличие автокорреляции остатков. Уравнение регрессии без свободного члена. Дисперсия результативного признака и остаточных величин.
презентация, добавлен 13.07.2015Определение критериев оптимальности планирования. Построение матрицы планирования с ортогональными вектор-столбцами. Оценка коэффициентов уравнения регрессии. Проверка адекватности описания объекта полиномом второго порядка с помощью F-критерия Фишера.
контрольная работа, добавлен 25.01.2024Регрессионный анализ - определение аналитического выражения связи, в котором изменение одной величины обусловлено влиянием одной или несколько независимых величин. Методы выбора математической модели в парной регрессии. Определение остатка для наблюдения.
реферат, добавлен 11.12.2017Понятие корреляции, сущность корреляции между двумя случайными величинами. Параметрические и непараметрические показатели корреляции. Свойства коэффициента корреляции, понятие ложной корреляции. Оценка корреляционной связи по коэффициенту корреляции.
реферат, добавлен 30.10.2015Методы определения вероятности и их сущность. Математическое ожидание и теоремы связанные с ним. Понятие о дисперсии, среднеквадратичном отклонении и моментах случайной величины. Корреляционная зависимость, функция регрессии, коэффициент корреляции.
методичка, добавлен 16.03.2017Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.
лекция, добавлен 10.10.2014Регрессионный анализ как статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную. Индекс корреляции и коэффициент детерминации. Методы наименьших квадратов. Пути решения системы нормальных уравнений.
практическая работа, добавлен 07.11.2014Ознакомление с формульным выражением параметрических показателей линейной и нелинейной парных корреляций. Анализ непараметрических проявлений взаимосвязи величин и сгруппированных альтернативных признаков. Оценка существенности уравнений регрессии.
презентация, добавлен 11.10.2013Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.
курс лекций, добавлен 27.10.2015Статистическое описание и выборочные характеристики двумерного случайного вектора. Однофакторный дисперсионный анализ. Построение диаграммы рассеяния и нанесение на нее уравнения регрессии. Особенности применения однофакторного дисперсионного анализа.
контрольная работа, добавлен 21.10.2017Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Анализ данных о потребительских расходах на душу населения. Расчёт среднего коэффициента эластичности. Оценка ошибки аппроксимации. Построение таблицы распределения Фишера. Поиск значения общей площади вторичного жилья методом наименьших квадратов.
контрольная работа, добавлен 07.04.2016