Байесовский подход при решении скоринговых задач

Теорема Байеса как логическая основа пересмотра суждений в зависимости от действительно происходящих событий. Возможности байесовского подхода для анализа как средства построения скоринговой системы. Нахождение оценок любых рисков. Точность прогноза.

Подобные документы

  • Матричные антагонистические игры, схема принятия решений. Основная теорема теории матричных игр (по Дж. фон Нейману). Теорема о принципе максимина. Игры с нулевой суммой в чистых стратегиях. Вычисление оптимальных стратегий на примере решения задач.

    курсовая работа, добавлен 28.02.2016

  • Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Неравенства и теорема о среднем. Вычисление с помощью повторного интегрирования. Анализ и практика применения тройных интегралов для расчета координат.

    презентация, добавлен 17.09.2013

  • Методы решения задач линейного программирования. Этапы нахождения оптимального решения, его постоптимального анализа. Проблемы построения электронных математических моделей линейного программирования и их оптимизации с помощью надстройки "Поиск решения".

    курсовая работа, добавлен 23.10.2011

  • Принципы построения формальных теорий. Проблемы, связанные с системой аксиом. Доказательство независимости системы аксиом. Исчисление высказываний, символы и формулы. Теорема дедукции и правило силлогизма (транзитивный вывод). Примеры решения задач.

    презентация, добавлен 17.04.2013

  • Введения понятия алгебры множеств. Необходимость объединять счетные наборы событий в теории вероятностей. Замкнутость множества относительно счетного числа любых других операций над событиями. Составление функций распределения на основе их рядов.

    контрольная работа, добавлен 09.01.2015

  • Понятие задачи-ловушки. Развитие логического мышления при их решении. Допущение обучающимися "смешных" ошибок по невнимательности при решении несложных математических задач. Примеры типичных ошибок. Психологическая инерция как главная причина трудностей.

    статья, добавлен 15.03.2019

  • Применение локальной теоремы Муавра-Лапласа при решении задач. Составление закона распределения случайной величины, определение математического ожидания, дисперсии. Вычисление средней квадратической ошибки выборки. Построение эмпирических линий регрессии.

    задача, добавлен 16.10.2017

  • Обзор математических методов построения и использования классификаций. Подходы к решению задач кластер-анализа и группировки. Глобальные и локальные критерии естественности классификации. Методы дискриминантного анализа и проблема построения рейтингов.

    статья, добавлен 13.05.2017

  • Наилучшая линейная процедура получения оценок параметров уравнения и условия, при которых эта процедура дает несмещенные и эффективные оценки, сформулированная в теореме Гаусса-Маркова. Вычисление дисперсии (ковариационной матрицы) параметров модели.

    презентация, добавлен 15.10.2014

  • Анализ предмета и модели механики. Объект классической механики. Момент силы относительно точки. Теорема о зависимости момента от центра. Теорема о проекциях моментов. Момент силы относительно оси. Главный момент системы сил. Вращательная система сил.

    лекция, добавлен 11.01.2020

  • Возможности применения производной при решении задач на оптимизацию в школьном курсе математики. Формулировка и численные методы решения задач одномерной оптимизации по заданным алгоритмам. Разработка модели факультативного урока по математике.

    курсовая работа, добавлен 26.10.2010

  • Использование стратегий, концепций, методов и механизмов эволюционного моделирования на основе бионического поиска при решении задач об экстремальных путях. Эффективность бионических алгоритмов при решении трудоемких задач оптимизации и аппроксимации.

    статья, добавлен 30.05.2017

  • Изложение универсального метода построения трёхмерных проекций гиперкубов любых n-мерных измерений (3ПГК-n) любых проекций и ракурсов. Алгебраические формулы для определения количества единичных геометрических элементов n-мерных гиперкубов, их проекций.

    научная работа, добавлен 26.04.2014

  • Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.

    курсовая работа, добавлен 13.09.2012

  • Сумма и произведение событий. Закон распределения случайных величин и их числовые характеристики, формула полной вероятности и теорема гипотез. Плотность и свойства функции распределения. Закон распределения Пуасона и теорема о числовых характеристиках.

    шпаргалка, добавлен 14.11.2010

  • Критерии непрерывности зависимости решений обыкновенного дифференциального уравнения, уравнения в частных производных. Нахождение приближенного решения краевых задач с оценкой погрешности. Математическая модель для решения задач механики сплошных сред.

    автореферат, добавлен 02.03.2018

  • Основной анализ построения алгоритма метода Гомори. Использование симплексной концепции при решении заданий. Особенность способа построения правильного отсечения без учета условия целочисленности. Характеристика решения задач линейного программирования.

    доклад, добавлен 08.06.2015

  • Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.

    реферат, добавлен 06.04.2009

  • Понятие матрицы и ее виды. Определители 2-го и 3-го порядков. Совместимость систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Использование систем линейных уравнений при решении экономических задач. Производные функции, их применение.

    учебное пособие, добавлен 02.02.2012

  • Систематическое обучение студентов решению прикладных задач методом моделирования как один из путей реализации компетентностного подхода. Выявление затруднений, возникающих у студентов на этапах формализации условия задачи и интерпретации результатов.

    статья, добавлен 16.06.2018

  • Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.

    статья, добавлен 20.04.2019

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.

    курсовая работа, добавлен 03.11.2018

  • Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.

    реферат, добавлен 03.10.2012

  • Определение момента окончания переходного процесса при изменении параметров непрерывной динамической системы на основе применения метода Ляпунова, основанного на оценивании областей притяжения состояний равновесия. Проблема построения функции Ляпунова.

    статья, добавлен 12.05.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.