Обучение модульной нейронной сети для многозадачного искусственного интеллекта
Погружение структурной модели в пространство рецепторных и аксоновых полей - процесс, порождающий топологическую модель нейронной сети, по которой можно реализовать адаптивный алгоритм обработки данных. Сущность регуляризации параметров алгоритма.
Подобные документы
Идентификация математических моделей химико-технологических процессов. Минимизация продолжительности нахождения настроечных коэффициентов благодаря использованию нейронной сети для снижения количества этапов поисковых алгоритмов на стадиях идентификации.
статья, добавлен 31.08.2018Специфические особенности алгоритма расчета порога бинаризации для полутонового изображения, реализованного на основе метода Оцу. Использование технологии искусственной нейронной сети для распознавания цифровых микроскопических изображений мокроты.
статья, добавлен 31.10.2017Анализ системы искусственного интеллекта. Описание моделей представления знаний как одного из важнейших направлений исследований в области искусственного интеллекта. Продукционная, фреймовая и логическая модели, семантические сети; экспертные системы.
реферат, добавлен 04.05.2014Оценка прогностической значимости распространенных нейросетевых моделей для анализа ценностных составляющих приема участкового врача-терапевта. Модели на базе многослойного персептрона, радиально-базисной функции и обобщенно-регрессионной нейронной сети.
статья, добавлен 08.04.2022Разработка архитектуры и алгоритмов функционирования стабильно-пластичной дискретной нейронной сети адаптивной резонансной теории, которая может распознавать объекты, изменяющиеся в дискретные моменты времени. Использование зашумленных исходных данных.
статья, добавлен 06.02.2017Процесс обучения нейросети-классификатора, сравнения эффективности теоретических методов оптимизации со стохастическими. Подтверждение преимуществ и потенциальных возможностей. Основные свойства задач (баз данных) и размеры нейронных сетей для них.
статья, добавлен 08.02.2013История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.
дипломная работа, добавлен 12.01.2012Разработка искусственной нейронной сети, выделяющей акустический сигнал утечки из шума водопровода. Правило обучения сети, основанное на критерии минимума абсолютного значения момента четвертого порядка, упрощающее реализацию сети в реальном времени.
статья, добавлен 02.09.2013Рассмотрение нейросетевых модификаций решения задач анализа изображений. Ознакомление со способами обучения нейронной сети для определения параметров прямой. Формирование виртуальной модели стенда. Характеристика процесса модификации детектора прямой.
статья, добавлен 19.01.2018- 110. Модель сети ячеистой топологии для организации распределенной отказоустойчивой обработки данных
Определение оптимального маршрута передачи данных в сети. Физические свойства беспроводных коммуникационных каналов. Исследование эффективности внедрения mesh-сетей на базе вычислительных устройств. Применение универсальных модулей для организации сети.
статья, добавлен 28.07.2017 Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.
статья, добавлен 06.03.2019Искусственные нейронные сети, основы описания многомерных тестовых данных. Построение области допустимых изменений параметров однородных групп, модели регрессии. Определение компонент дискретного конечного множества элементов. Нейронная сеть Хопфильда.
учебное пособие, добавлен 15.01.2018Процесс создания и обучения нейронной сети для задачи классификации изображений собак и кошек с использованием TensorFlow и архитектуры MobileNetV2. Описание подготовки и предобработки данных, включая изменение размеров и нормализацию изображений.
статья, добавлен 05.09.2024- 114. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Метод синтеза полиномиальных нейронных сетей для решения задач прогнозирования нестационарных временных рядов. Характеристика метода с точки зрения численной реализации, усложнения архитектуры нейронной сети и пересчета настроенных синаптических весов.
автореферат, добавлен 30.01.2016Создание баз с неопределенными твитами и твитами с рекламой. Реализация и обучение свёрточной нейронной сети, методы классификации текстов по их тональности. Используемый функционал на языке программирования Python, реализация и обучение Word2Vec.
дипломная работа, добавлен 28.10.2019Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.
лекция, добавлен 13.09.2017Знакомство со средой создания нейронных сетей. Сущность статической и динамической архитектуры. Основные сети каскадной корреляции. Искусственные нейронные сети и алгоритмы классификации. Разработка проектов создания комплекса лабораторных работ.
дипломная работа, добавлен 04.07.2018- 119. Система обработки изображений при диагностике наследственных заболеваний по методу дерматоглифики
Алгоритмы компьютерной обработки изображений, позволяющие существенно повысить скорость проведения диагностики сахарного диабета на основе дерматоглифического исследования. Элементы программного обеспечения системы. Результат обучения нейронной сети.
автореферат, добавлен 02.07.2018 - 120. Разработка веб-приложения для масштабирования растровых изображений с использованием нейронных сетей
Процесс масштабирования (увеличения) изображения с минимальной потерей в качестве. Анализ способа соединения классического метода масштабирования и метода машинного обучения. Алгоритм работы нейронной сети, разработанной для масштабирования изображений.
дипломная работа, добавлен 01.08.2017 Разработан и описан алгоритм процесса конвертирования поступающих в программный комплекс исполняемых файлов в черно-белые изображения, позволяющий сформировать собственный набор данных для обучения нейронной сети на основе полученных изображений.
статья, добавлен 16.05.2022- 122. Интерфейс GPSS World
История создания системы GPSS. Сущность имитационной модели СМО. Параметры входных и выходных потоков заявок. Построение структурной схемы модели передачи данных. Принцип работы системы передачи данных. Описание сети в виде системы массового обслуживания.
лабораторная работа, добавлен 12.02.2012 - 123. Нейронные сети
Изучение типологии нейронных сетей. Основные отличия от машин с архитектурой фон Неймана. Оценка процессов, протекающих в мозге человека. Разработка демонстрационной версии программы Neural Network Wizard, созданной на основе нейронной сети Кохонена.
реферат, добавлен 13.04.2014 История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.
курсовая работа, добавлен 16.12.2016Автоматизация сбора, анализа и обработки данных в супермаркете. Разработка программы для распознавания лиц в живой очереди или изображений в реальном времени. Архитектура нейронной сети. Общий вид и назначение персептрона, оценка точности его работы.
статья, добавлен 25.02.2019