Случайные величины

Случайная величина, которая в зависимости от исхода испытания случайно принимает одно из множества возможных значений. Непрерывные и дискретные случайные величины. Основные свойства функции распределения, математического ожидания, коэффициента корреляции.

Подобные документы

  • Способы задания дискретной случайной величины. Изучение основных свойств функции распределения. Вероятность того, что непрерывная случайная величина примет одно определенное значение. Плотность распределения вероятностей непрерывной случайной величины.

    презентация, добавлен 08.12.2014

  • Содержание и характерные особенности непрерывных случайных величин. Функция и плотность нормального и равномерного распределения. Числовые характеристики случайных величин. Влияние возможных отклонений от допущений при оценке точности решения задач.

    реферат, добавлен 19.07.2010

  • Применение закона распределения дискретной случайной величины. Соответствие между возможными значениями и их вероятностями. Функция распределения вероятностей случайной величины. Плотность распределения вероятностей дискретной случайной величины.

    реферат, добавлен 15.06.2014

  • Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.

    учебное пособие, добавлен 25.11.2013

  • Определение вероятности суммы совместных событий. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон (распределение Гаусса). Функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    презентация, добавлен 10.08.2015

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Случайные величины и их классификация, числовые характеристики: математическое ожидание, дисперсия. Статистические гипотезы и способы их проверки: сравнение двух генеральных совокупностей, двух биномиальных распределений, критерий согласия Пирсона.

    контрольная работа, добавлен 12.01.2013

  • Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.

    учебное пособие, добавлен 23.02.2011

  • Вероятность наступления события в каждом из независимых испытаний. Определение математического ожидания, дисперсии, среднего квадратического отклонения дискретной случайной величины по закону её распределения. Вероятность абсолютной величины отклонения.

    задача, добавлен 17.01.2015

  • Плотность распределения нормальной случайной величины. Вычисление ее дисперсии, математического ожидания и среднеквадратического отклонения. Интегральная функция Лапласа. Правило "трех сигм". Понятие "двумерной" величины. Формула условной вероятности.

    лекция, добавлен 19.01.2015

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Случайные величины. Математическое ожидание дискретной величины. Понятие дисперсии. Характеристика нормального распределения. Его графическое представление. Распределения, отличные от нормального. Эмпирические выбросы. Показатели асимметрии и эксцесса.

    методичка, добавлен 24.07.2014

  • Общая теория о величинах, значение которых изменяются скачками. Построение многоугольника вероятностей. Биномиальный и пуассоновский законы дискретной случайной величины. Свойства системы математического ожидания. Геометрический закон распределения.

    лабораторная работа, добавлен 01.03.2015

  • Методы обработки экспериментальных данных. Случайные величины и законы распределения. Основные свойства плотности распределения. Числовые характеристики случайных величин. Кривые распределения с различной степенью крутости. Виды асимметрии распределений.

    курсовая работа, добавлен 11.11.2015

  • Рассмотрение функции распределения (интегральной). Характеристика функции плотности вероятности. Определение особенностей функции распределения для дискретных случайных величин. Исследование моментов случайных величин. Обзор характеристических функций.

    презентация, добавлен 29.09.2017

  • Понятие и виды случайных величин, их числовые характеристики. Свойства дисперсии и вычисление числовых характеристик стандартных распределений. Функции от случайных величин, условные законы распределения. Потоки событий и теории массового обслуживания.

    лекция, добавлен 21.03.2018

  • Определение вероятности случайного события. Закон распределения случайной величины и расчет числовых характеристик (математического ожидания и дисперсии). Точечные оценки математического ожидания. Оценка коэффициента корреляции, расчет линейной регрессии.

    контрольная работа, добавлен 26.10.2014

  • Построение графиков эмпирической функции распределения и полигона частот исследуемой случайной величины. Вычисление несмещенных оценок математического ожидания и дисперсии. Гипотеза о законе распределения генеральной совокупности с уровнем значимости.

    задача, добавлен 24.12.2014

  • Вычисление вероятности с помощью теоремы Пуассона, функции распределения и неравенства Маркова. Нахождение математического ожидания и дисперсии, коэффициента корреляции, среднего квадратического отклонения и функции распределения случайной величины.

    контрольная работа, добавлен 27.04.2015

  • Оценка математического ожидания, дисперсии и среднеквадратического отклонения случайной величины x. Гипотеза о законе распределения случайной величины x, ее проверка по критерию Пирсона. Доверительные интервалы для математического ожидания и дисперсии.

    контрольная работа, добавлен 06.05.2014

  • Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.

    контрольная работа, добавлен 25.01.2015

  • Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.

    лекция, добавлен 25.01.2013

  • Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.

    учебное пособие, добавлен 25.12.2013

  • Анализ правил дифференцирования. Производные основных элементарных функций. Правило Лопиталя и его применение к вычислению пределов. Суть свойств неопределенного интеграла. Способы непосредственного подсчета вероятности. Главные элементы комбинаторики.

    шпаргалка, добавлен 07.11.2016

  • Исследование геометрического закона распределения вероятностей дискретной случайной величины. Построение графиков зависимости математического ожидания от параметра распределения. Написание функции для определения коэффициентов эксцесса и асимметрии.

    лабораторная работа, добавлен 03.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.