Теория вероятности

Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.

Подобные документы

  • Определение и распределение дискретной случайной величины при множестве возможных значений. Свойства геометрической функции распределения. Формульное выражение математического ожидания. Графики функции и плотности распределения непрерывной величины.

    методичка, добавлен 03.12.2013

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Сущность функции распределения случайной величины и ее свойства, плотность распределения вероятностей. Математическое ожидание случайной величины, его вероятностный смысл и свойства. Критерий согласия Пирсона, дисперсия случайной величины и ее свойства.

    курсовая работа, добавлен 07.02.2016

  • Формулы комбинаторики и вероятность. Классическое определение вероятности. Непрерывные и дискретные случайные величины. Закон распределения случайных дискретных величин, их числовые характеристики. Статистические методы обработки экспериментальных данных.

    учебное пособие, добавлен 29.09.2017

  • История развития теории вероятности. Понятия события, его главные свойства и порядок обозначения. Характеристика основных типов: невозможное и достоверное. Задачи, решаемые формулой Байеса, ее необходимые условия. Расчет полной вероятности события.

    реферат, добавлен 21.05.2013

  • Независимость событий и случайность отбора. Использование формулы Пуассона и формулы Бернулли. Закон распределения и числовые характеристики. Соотношение доверительной вероятности и коэффициента доверия. Несмещенные оценки математического ожидания.

    контрольная работа, добавлен 23.04.2013

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Исследование геометрического закона распределения вероятностей дискретной случайной величины. Построение графиков зависимости математического ожидания от параметра распределения. Написание функции для определения коэффициентов эксцесса и асимметрии.

    лабораторная работа, добавлен 03.04.2014

  • Вычисление математической вероятности, нахождение независимых событий по теореме умножения вероятностей. Определение возможной вероятности того, что ни один из трех станков не потребует внимания рабочего, расчет вероятности поломки для каждого станка.

    задача, добавлен 13.10.2014

  • Рассмотрение интересных закономерностей в возникновении случайного события. Изучение теорем сложения вероятностей. Как работает закон равномерной плотности вероятности. Приведение примеров случайных величин. Обоснование функции распределения, ее свойства.

    реферат, добавлен 04.02.2010

  • Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.

    лекция, добавлен 25.01.2013

  • Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.

    курс лекций, добавлен 02.09.2016

  • Анализ вероятности события на примере процентного соотношения брака в выборке произведенных деталей. Построение ряда распределения, дисперсии, оценка вероятности попадания случайной величины в заданный интервал. Оценка среднего квадратического отклонения.

    контрольная работа, добавлен 03.04.2013

  • Введение понятия бинарного события. Рассмотрение событий, задаваемых булевыми функциями. Доказывание теоремы о вероятности события. Получение расчетных формул для условных вероятностей и формул Байеса, построение задач на применение полученных формул.

    статья, добавлен 12.08.2020

  • Вероятность случайного события и элементы комбинаторики. Основные теоремы теории вероятностей. Многомерная случайная величина и закон ее распределения. Точечные оценки параметров генеральной совокупности. Гипотеза о равенстве математических ожиданий.

    презентация, добавлен 05.10.2014

  • Определение вероятности случайного события, классической вероятности, статистической. Частота случайного события. Сумма и произведение двух событий. Функции распределения и плотности, начальные и центральные моменты. Мода, медиана, асимметрия и эксцесс.

    контрольная работа, добавлен 12.04.2014

  • Особенности определения вероятности возникновения ошибки при различных процессах и применение схемы Бернулли. Математическое ожидание для случайной величины, распределенной по биномиальному закону. Расчет генеральной и выборочной дисперсии чисел.

    контрольная работа, добавлен 13.11.2014

  • Рассмотрение теоремы умножения вероятностей. Характеристика основных задач математической статистики. Выборка как набор объектов, случайно отобранных из генеральной совокупности, виды: повторная, бесповторная. Особенности непрерывных случайных величин.

    дипломная работа, добавлен 07.12.2012

  • Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.

    лекция, добавлен 26.07.2015

  • Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.

    контрольная работа, добавлен 10.12.2013

  • Закономерности случайных явлений. Методы количественной оценки влияния случайных факторов на различные явления. Операции над событиями и их свойства. Дискретные и непрерывные случайные величины. Ряд распределения вероятности дискретной случайной величины.

    курс лекций, добавлен 16.05.2016

  • Дискретные и непрерывные случайные величины. Функция распределения вероятностей случайной величины и ее свойства. Плотность распределения вероятностей. Числовые характеристики непрерывных случайных величин. Законы распределения, теорема Ляпунова.

    курсовая работа, добавлен 01.11.2014

  • Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.

    презентация, добавлен 01.11.2013

  • Примеры решения задач по теории вероятности. Описание формул, которые применяются для решения таких задач. Построение группы гипотез для решения задач. Функция распределения непрерывной случайной величины. Применение равномерного закона распределения.

    курсовая работа, добавлен 07.03.2019

  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций, добавлен 23.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.